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Abstract: Cellular automata (CAs) are mathematical models of spatially and temporally discrete mathematical systems. Non-
uniform CAs are the cellular automata in which each cell may contain a different transition rule and change it with time, while all
cells share the same transition rule in regular CAs. Little is still known about the dynamics of open-ended evolution of rules in
non-uniform CAs. The purpose of our study is to construct and investigate a model of non-uniform CAs capable of open-ended
rule evolution exhibiting a wide variety of behavior across all Wolfram’s classes. For this purpose, we construct 1-dimensional
2-state 3-neighborhood non-uniform CAs with evolving transition rules. In the model, we found an interesting dynamics that
Class II (periodical behavior) and III (chaotic behavior) patterns emerged alternately, between which Class IV patterns sometimes
emerged.
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1 INTRODUCTION

Cellular automata (CAs) are mathematical models of spa-
tially and temporally discrete mathematical systems. They
consist of a large number of relatively simple units (“cells”).
Each cell is a simple finite automaton that repeatedly updates
its own state depending on the cell’s current state and those of
its immediate neighbors. They have been commonly used to
describe and explore complex systems. One of the pioneer-
ing work is the classification of the CA behavior into four
classes (Class I, II, III and IV) by Wolfram [1]. In a typ-
ical Class IV CA, initial patterns evolve into structures that
interact in complex ways based on a mixture of order and ran-
domness (“edge of chaos”). The connection between such a
complexity and the (origin of) life have been frequently dis-
cussed in the artificial life community. Additionally, Langton
[2] has been successful in assessing Wolfram’s each classes
quantitatively. He indicated that Class III show the highest
entropy and Class IV show the highest mutual information.
Moreover, Mori et al. [3] have proposed a rule-changing CA
model based on internal dynamics. They indicated that this
CA model may show higher mutual information than normal
CA.

Non-uniform CAs are the cellular automata in which each
cell may contain a different transition rule and change it with
time, while all cells share the same transition rule in regular
CAs. In the previous studies, non-uniform CAs often have
been evolved to perform computational tasks including den-
sity classification and synchronization. Before then, Packard
[4] and Mitchell [5] used a genetic algorithm to evolve CA
rules to perform a specific task. Sipper [6] demonstrated that
non-uniform CAs is partially superior to uniform CAs. How-
ever, little is still known about the dynamics of open-ended

evolution of rules in non-uniform CAs.
The purpose of our study is to construct and investigate

a model of non-uniform CAs capable of open-ended rule
evolution exhibiting a wide variety of behavior across all
Wolfram’s classes. We also aim at applying it to visual art-
work based on a never-ending autonomous flow of informa-
tion. For this purpose, we construct 1-dimensional 2-state
3-neighborhood non-uniform CAs with evolving transition
rules. Each cell has not only its state but also its transition
rules. The transition rules of cells with high fitness that is
calculated using entropy tend to propagate to neighboring
cells. Specifically, we use the fitness of each transition rule
defined as Shannon entropy for the state distribution of the
3-step history of 5-neighborhood cells. In addition, mutation
may change the transition rule of each cell into another rule,
which brings a novelty into the system.

2 MODEL

2.1 Algorithm
We use 1-dimensional 2-state 3-neighborhood cellular

automata (CAs) and their states of the cells. Each cell
also has a transition rule, represented as a binary sequence
(x7x6x5x4x3x2x1x0). This rule maps 3-neigborhood states
to a decimal number xi ∈ (0, 1): [000] to x0, [001] to x1,
· · ·, and [111] to x7.

Each cell is updated by the the procdures as follows: (i)N
cells are arranged on a 1-dimensional array. Each cell has a
state that is set 0 or 1 arbitrarily, and a rule that is chosen arbi-
trarily from 1-dimensional 2-state 3-neighborhood CAs (el-
ementary CA, ECA) rules. (ii) Each cell determines its next
state on the basis of its rule and the states of 3-neighborhood
cells including itself. (iii) Each cell calculates its own fitness
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Fig. 1. The state distribution A.
Fig. 2. The typical state patterns of the 7 classes in
ECA. Fig. 3. The artwork.

(Section 2.2). (iv) Each cell replaces its own rule by the rule
of the cell with the highest fitness in 3-neighborhood. (v)
Each bit xi in the rule representation (x7x6x5x4x3x2x1x0)

is flipped with a mutation rate µ as mutation. (vi) Update
each cell’s state and time step. (vii) Return to (ii) ((ii) - (vi)
are repeated G times with (iii) and (iv) being skipped during
the first Lh repetitions).

2.2 Fitness
The fitness of each cell is defined as Shannon entropy as

follows. Here, K is set to 2 as the number of possible states
(0 or 1), and pi is the appearance ratio of each state in the
spatial (Lw-neighborhood cells) and temporal (Lh-step his-
tory) domains (A in Fig. 1). Therefore, when the numbers
of 0 and 1 in the domain are the same, it will be the highest
and, in contrast, when the number of 0 or 1 is 0, it will be the
lowest.

Fitness = H(A) = −
K∑
i=1

pi log pi

3 EXPERIMENT
We investigate the rule evolution over the long time steps

in Section 3.1 and focus on two characteristic patterns of rule
evolution in Section 3.2. To do so, we classify the 256 ECA
rules into seven groups (Class I, Class II-F, Class II-P, Class
III-LC, Class III-C, Class IV-54 and Class IV-110). It covers
four classifications by Wolfram [1] and five classifications by
Li and Packard [7] as shown in Table 1.

We used the following parameter values: N = 200 (num-
ber of cells), G = 2.0 × 106 (number of steps), Lw =

5, Lh = 3 (parameters for the fitness), µ = 1.0× 10−4 (mu-
tation rate). All cells began with the state 0 and the rule 0.

3.1 Rule evolution over the long time steps
Fig. 4 shows the distribution of classes to which the exist-

ing rules belong (upper), and the number of the different ex-
isting rules and the average fitness (lower), across 2 million
time steps. We see a general tendency that Class II-F (fixed
point) and Class III-C (chaotic) dominate the population al-
ternatively (Phase II and Phase III). There is also a tendency

Table 1. Classifications of ECA rules. Our classification is
as follows (The rules inside the parenthesis are equivalent to
the representative rule). Class I: 0 (255), 8 (64, 239, 253), 32, (251), 40 (96, 235, 249), 128 (254),

136 (192, 238, 252), 160 (250), 168 (224, 234, 248), Class II-F: The rest of ECA rules, Class II-P: 1 (127), 3, 5 (95), 6

(20, 159,215), 7 (21, 31, 87), 9 (65, 111, 125), 11 (47, 81, 117), 14 (84, 143, 213), 15 (85), 19 (55), 23, 25 (61, 67, 103),

27 (39, 53, 83), 28 (70, 157, 199), 29 (71), 33 (123), 35 (49, 59, 115), 37 (91), 38 (52, 155, 211), 41 (97, 107, 121), 43

(113), 50 (179), 51, 74 (88, 173, 229), 108 (201), 131 (62, 145, 118), 133 (94), 134 (148, 158, 214), 142 (212), 156 (198),

178, Class III-LC: 26 (82, 167, 181), 73 (109), 154 (166, 180, 210), Class III-C: 18 (183), 22 (151), 30 (86, 135, 149), 45

(75, 89, 101), 60 (102, 153, 195), 90 (165), 105, 106 (120, 169, 225), 129 (126), 146 (182), 150, 161 (122), Class IV-54:

54 (147), Class IV-110: 137 (110, 124, 193)

Fig. 2 Wolfram Li&Packard This study
(a) Class I null Class I
(b) Class II fixed-point Class II-F
(c) Class II periodic Class II-P
(d) Class III locally chaotic Class III-LC
(e) Class III chaotic Class III-C
(f) Class IV chaotic Class IV-54
(g) Class IV chaotic Class IV-110

that in Phase II, the average fitness is stable and high, and the
number of the different rules is high (10-30), and in contrast,
in Phase III, the average fitness is rather unstable and lower,
and the number of the different rules is lower (-10). Espe-
cially, typically in Phase III, the average fitness sometimes
has a sudden decrease to around 0.8, that is accompanied by
a sudden increase to around 40 in the number of the different
rules.

Concerning the Class IV, which is the most interest-
ing class, Class IV-54 sometimes dominates the population
mainly in Phase II and Class IV-110 occasionally emerges a
little (0-10 cells) almost instantaneously typically in Phase
III. This tendency might due to the resemblance of the pat-
terns generated by Class IV-54 to Phase II patterns or the re-
semblance of the patterns generated by Class IV-110 to Phase
III patterns.

Next, we focus on the process which realize the transition
from Phase II to Phase III, or vice versa.
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Fig. 5. The number of the existing rules and the average fitness (lower); the distribution of that the 7 classes, the 256 rules and
the 2 states (middle); the images of the distinctive patterns (upper) from Phase II to Phase III.

Fig. 4. The number of the existing rules and the average
fitness (lower); the distribution of the 7 classes (upper) over
2 million time steps.

3.2 Rule evolution from Phase II (III) to Phase III (II)
Fig. 5 and Fig. 6 show the transitions of the number of the

different existing rules, and the average fitness (lower), the
state transition between 2 states, rule transition among 256
rules, and class transition among 7 classes (middle), and the
enlarged parts of the distinctive patterns in the rule evolution
(upper), across 20 thousand time steps, from Phase II to III,
and Phase III to II, respectively.

We see from Fig. 5 that a transition from Phase II to III
takes place through the three stages: Stage (1) as trigger cre-
ation, Stage (2) as rule diversification, and Stage (3) as strat-
egy stabilization. The trigger in Stage (1) shifts the state
distribution from Stage (1) to (2) introducing many various
transition rules. In Stage (2), the average fitness of the cells
is relatively low, and the number of existing transition rules

is high. After that, Class III emerges and spreads gradually.
It is also shown from Fig. 6 that a transition from Phase III

to II takes place through the three stages similar to the transi-
tion from Phase II to III: Stage (1) as trigger creation, Stage
(2) as rule diversification, and Stage (3) as strategy stabiliza-
tion. The trigger in Stage (1) shifts the state distribution from
Stage (1) to (2) introducing many various transition rules.
Specifically, (D) consists of Class II-F, III-C and IV-54, and
(E) consists of Class II-F, II-P and IV-110. In Stage (2), the
average fitness is also relatively low, and the number of exist-
ing transition rules is high. After that, Class II emerges and
spreads gradually.

A closer observation of Fig. 5 reveals that there is a differ-
ence in dominant rules and state distribution between Stages
(1) and (2), while Class II-F rules dominate the population
throughout Stages (1) and (2). We see actually a clear differ-
ence between the enlarged patterns (A) and (C) that are the
distinct patterns in Stage (1) and (2), respectively. The dis-
tinct pattern in Stage (3) is (D), which is a typical pattern of
Class III-C behavior.

On the other hand, we see from Fig. 6 that while Class
II-F dominates the population throughout Stages (2) and (3),
there is also a difference in dominant rules and state distribu-
tion between Stages (2) and (3). Similarly, we see from the
enlarged patterns that the distinct patterns in Stage (2) and
(3) are (C) and (F), respectively, and that in Stage (1) is (A)
which is a typical pattern of Class III-C behavior.

It is noticeable fact that the transitions from Phase II to III
and from Phase III to II share some common dynamics. Ac-
cumulation of mutations suddenly but, in a sense, inevitably
induces a state distribution in which several rules work to-
gether as a trigger to invoke Stage (2) in both transitions. In
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Fig. 6. The number of the existing rules and the average fitness (lower); the distribution of that the 7 classes, the 256 rules and
the 2 states (middle); the images of the distinctive patterns (upper) from Phase III to Phase II.

this sense, (B) in both figures can be seen as a part of the
triggers.

4 CONCLUSION

We examined the space-time patterns generated by the
proposed non-uniform CAs. We found an interesting dynam-
ics that Class II (periodical behavior) and III (chaotic behav-
ior) patterns emerged alternately, between which Class IV
patterns sometimes emerged. It was observed continuously
over 2 million time steps and therefore, we regard this dy-
namics as underlying and inherent in the model.

More detailed analysis showed that during the alternation,
the average fitness of the cells was relatively low and at the
same time, the number of existing transition rules was high.
Our interpretation of this is that some decrease in average
fitness could start the alternation and this decrease induced
various transition rules to emerge. We thus believe that de-
crease in average fitness and the resulting emergence of vari-
ous transition rules are the key to the complex dynamics ob-
served in the model.

The art exhibition “ALart 2012” was held at the Nagoya
University Project Gallery “clas” in February 2012 featur-
ing the artwork “One-Dimensional Cells”. It was based on
a never-ending autonomous flow of information created by
the proposed model (Fig. 3). The artwork was also used to
create the posters of the exhibition [8], which were put up
in or around the campus including on the wall in the nearby
subway station.

Future work includes investigating analyzing the level of
open-ended rule evolution and the complexity of the global
state distribution quantitatively.

REFERENCES
[1] S. Wolfram. A new kind of science. Wolfram Media Inc,

2002.

[2] C. G. Langton. Computation at the edge of chaos: Phase
transitions and emergent computation. Physica D: Non-
linear Phenomena, 42(1):12–37, 1990.

[3] T. Mori, K. Kudo, Y. Namagawa, R. Nakamura, O. Ya-
makawa, H. Suzuki, and T. Uesugi. Edge of chaos in
rule-changing cellular automata. Physica D: Nonlinear
Phenomena, 116(3):275–282, 1998.

[4] N. H. Packard. Adaptation toward the edge of chaos. In
A. J. Mandell J. A. S. Kelso and M. F. Schlesinger, edi-
tors, Dynamic Patterns in Complex Systems, pages 293–
301. World Scientific, 1988.

[5] M. Mitchell, P. T. Hraber, and J. P. Crutchfield. Revisit-
ing the edge of chaos: Evolving cellular automata to per-
form computations. Complex Systems, 7:89–130, 1993.

[6] M. Sipper. Co-evolving non-uniform cellular automata
to perform computations. Physica D: Nonlinear Phe-
nomena, 92(3):193–208, 1996.

[7] W. Li and N. Packard. The structure of the elemen-
tary cellular automata rule space. Complex Systems,
4(3):281–297, 1990.

[8] Artificial Life Laboratory at Nagoya University. The
poster of “Alart 2012”. http://www.vision.ss.is.nagoya-
u.ac.jp/clas/programs/docs/2012 alart2012.pdf, (in
Japanese), 2012.

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13), 
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 319




