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Abstract: A subunit-based Dynamic Time Warping (DTW) approach is introduced for hand movement recognition. Two major 
contributions distinguish the proposed approach from conventional DTW. (1) A set of hand movement subunits is constructed 
using a data-driven method. The learning is based on subunits instead of the whole hand movement for more efficient learning. 
(2) A more accurate similarity measure is offered using subunit-to-subunit matching to absorb the difference between two 
similar sub-sequences belonging to the same subunit, and only keeping the distances between sub-sequences that relate to 
different subunits. Compared with the conventional DTW approach, the proposed approach is experimentally demonstrated to 
be both accurate and efficient for locally collected datasets. 
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1 INTRODUCTION 

Vision-based hand gesture recognition has attracted 

considerable attention because of its new and fascinating 

applications such as interactive human-machine interfaces, 

sign language interpretation, and virtual environments [1]. 

Features such as appearance, shape, and orientation often 

play an important role in hand gesture recognition. In this 

paper, we consider hand gestures as movement trajectories 

and focus on recognition of the movement trajectories. 

Dynamic time warping (DTW) [2] is widely used to 

recognize movement trajectories, because it simultaneously 

aligns time-variable data and computes a likelihood of 

similarity. Generally speaking, there are two major 

limitations to the use of DTW in hand movement 

recognition. (1) DTW matching uses information about 

individual training examples that it is sensitive to variations 

in training data. Hence, it is difficult to support efficient 

personalized gesture recognition. (2) DTW is sensitive to 

noise and unable to distinguish movement trajectories that 

have similar subsequences, as it requires continuity along 

the warping path. The use of DTW consequently requires 

the development of many prototypes to achieve proper 

performance, leading to an expensive computational load. 

To address these issues, we develop an effective 

recognition approach that combines the use of the DTW 

distance metric and subunits, widely investigated in the 

field of sign language [3][4]. Subunits are elementary units 

in a language and there are far fewer subunits than words in 

the vocabulary of the language, which is expected to lead to 

smaller data size in training and a smaller search space in 

recognition. 

2 OVERVIEW OF THE PROPOSED APPROACH 

Our system handles color image sequences in real time 

to recognize numbers from 0 to 9 by the hand movement 

trajectories. In the training phase, all training data are 

mapped to sequences of digits between 0 and 7 according to 

their orientation feature and then segmented into the set of 

basic motion units according to changes in orientation. Next, 

subunits are selected via clustering and set as the yielded 

cluster centers. In this case, each training sequence is 

mapped to a sequence of subunits. In the testing phase, the 

test sequence is also represented as a sequence of subunits 

and then classified according to DP matching between the 

test sequence and training sequences. Specifically, DTW 

distance is measured by subunit-to-subunit matching to 

improve recognition accuracy and online learning is used to 

adapt the training set to the user’s individual habits. 

 

3 HAND MOVEMENT REPRESENTATION 

Hand movement trajectories are obtained by detecting 

the top most point of the hand skin region as the fingertip. 

To represent these trajectories, we use the orientation 

feature, which has been shown to provide high accuracy in 

hand movement recognition in previous work [5]. A hand 

movement is a spatio-temporal trajectory that consists of 

fingertip positions ( , ), t = 1,2, … , − 1 , where T 
indicates the length of trajectory. Similar to [5], we 

calculate the orientation feature according to the positions 

of fingertips between consecutive frames as follows. 

 = −− ; = 1,2, … , − 1
 (1)
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orientation and then segmented into  submovements . 

We calculate DTW distances between submovement  

and all subunits to find the nearest subunit  and then use 

these subunits to recompose the testing sequence	 . The 

yielded testing sequence = ,… , , … ,  is used 

to perform subunit-to-subunit matching with training data. 

5.3. Submovement-to-subunit matching 
Hand movement trajectories are recognized through 

dynamic subunit sequence matching. Let = ,… , , … , 	be a training sequence consisting 

of n subunits. The distance , = ( , ) is 

calculated as follows. 

 

( , ) = min , +, +			 , +   

(2)

 = min 0																																	 	 = 	, 									 	 ≠  
 

(3)

 

Here, ,  is obtained using the look-up table 

generated during the construction of subunits. 

 

6 EXPERIMENTS 

To test the proposed approach for hand movement 

recognition and to compare with conventional DTW, we 

perform evaluations in terms of the recognition rate and 

average computational time for a locally collected hand 

movement corpus. Here, the average computation time is 

the average time taken to calculate the distance. 

The constructed corpus contains 10 different classes of 

hand movement trajectories from 0 to 9, performed by 

seven subjects in our laboratory environment. Each of the 

10 classes of trajectories is repeated 25 times by each 

subject. To evaluate the performance for datasets of 

different size, we randomly select 9, 15, and 30 training 

samples from each class, performed by three subjects, to 

construct the training set. The other data corresponding to 

the other four subjects are used as a test set. To obtain 

results that are more reliable, the construction of subunits 

and evaluation of recognition performance were repeated 

five times using different datasets constructed relating to 

different subjects. 

6.1 Evaluation of the recognition rate 
Recognition rates classified according to three different 

sizes of training set are compared in Fig. 3. Compared with 

conventional DTW, the proposed approach showed a 

significant improvement when there were only nine training 

data. The findings indicate that the proposed approach is 

able to overcome the sensitivity to training data of 

conventional DTW to offer high recognition accuracy even 

when there are few training data. The two main reasons for 

the improvement are as follows. 

6.1.1 Increase in the variety of training data 

To train each movement as a concatenation of subunits 

increases the variety of training data such that it is possible 

to recognize new training patterns not seen in training.  

For instance, we might have a training set of three 

training data = , , , = , , and = , , where , , and  are segmented 

submovements and are clustered into three subunits = , = , ,  and = , . 

According to the yielded subunit set, training data are 

mapped to sequences of subunits = , , , = ,  and = , . 

In the example, we only train two training prototypes 

 and  for three training data because  and 

 are mapped to the same prototype . The reduction 

of training prototypes improves learning efficiency while 

maintaining the variety of training data to avoid loss of 

recognition accuracy. In addition, training patterns that can 

be represented by the training prototype  are not only 

 and  but also , , and so on. That is, 

the variety of  and 	is increased to | || | training 

patterns because of the use of existing subunits that include 

motion units from the other training data. It is thus also 

possible to recognize new patterns, even though they are 

not seen in the training. These merits achieve an 

improvement of the recognition rate without requiring high 

computational complexity. 

6.1.2 A more accurate similarity measure 

The conventional DTW distance metric is sensitive to 

noise and unable to find movement trajectories that have 

similar sub-sequences. Therefore, similar trajectories may 

be treated as dissimilar, leading to inaccurate recognition. 

As illustrated in Fig. 4, the proposed approach offers a more 

accurate similarity measure because it absorbs the 

difference between two similar sub-sequences belonging to 

the same subunit and only keeps the distances between sub-

sequences that relate to different subunits. 

6.2 Evaluation of average computation time 
The average computation time and the number of 

training prototypes when using subunit-based learning are 

given in Fig. 5. The results indicate that a significant    

improvement in computational complexity was obtained. 
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