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Abstract: Minority Game (MG) is an N-person game which represents the collective behavior of agents in an idealized 

situation in which they have to compete for some finite resource. MG has been studied actively in various fields, but most 

studies have not focused on the communication among agents. To study the evolution of communication in the MG, we 

extended the standard MG to a new game named Interactive Minority Game (IMG) by incorporating the two aspects: a 

continuous strategy space and a pre-play communication stage. In order to understand basic behaviors of agents in the IMG, we 

prepare three agents each of which is equipped with a recurrent neural network (RNN) to adjust the tentative strategy value in 

the pre-play communication stage and evolved the connection weights of each RNN based on the payoff of IMG. As a result, 

we saw the emergence of various communications such as the adaptive adjustment behavior and oscillation of strategy values 

of each agent. Moreover, we found the strategy differentiation among agents where two agents adopt "high-risk high-payoff" 

strategy and the rest one adopts "low-risk low-payoff". 
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1 INTRODUCTION 

Minority Game (MG) is an N-person game which 

represents the collective behavior of agents in an idealized 

situation where they have to compete for some finite 

resource. Each of N agents chooses one out of two 

alternatives independently, and those who have chosen the 

minority choice among them win and are awarded a point 

[1]. Minority Game has been studied actively in various 

fields because of its simplicity and emergent characteristics 

(e.g., the emergence of cooperation among agents and the 

phase transition [2], [3]).  

However, most studies have not focused on the 

communication among agents in the MG. In the real world, 

people in competitive situations do not make decisions 

based only on the past record, but also based on 

communication among them. 

We focus on the communication among agents and 

propose a new model named Interactive Minority Game 

(IMG) [4], where agents make decisions based on dynamic 

interactions between them instead of the past record. There 

are several studies to incorporate communication among 

agents into the MG [5], [6]. Anghel et al. proposed a 

network-based Minority Game where agents are connected 

with a random network [5]. Agents employ a two-step 

decision making procedure and exchange the decision-

making information with others through the links. First, 

each agent predicts what the minority choice will be based 

on its own strategy table. Then, it selects the agent which 

has made the most accurate predictions so far from among 

its neighboring agents including itself, and adopts its 

prediction as the final choice. As a result of simulations, 

they discovered that the scale-free imitation network 

emerged on the random network. 

In their model, the information which agents exchange 

is only a binary decision and one-shot, and thus it cannot be 

regarded as a dynamic communication. We incorporate pre-

play communication stage in which agents can modify their 

intentions continuously and dynamically observing others’ 

intentions before their final decision making.  

To incorporate the dynamic communication, we need to 

change the agents’ intentions and payoff from binary to real 

values. In our model, each agent expresses its intention by 

strategy value a (∈  [-1, 1]) and receives the payoff 

depending on the value. 

As a first step of our study [4], we dealt with the 

evolutionary dynamics of social sensitivity of agents and 

role switching. This paper focuses on the evolved pre-play 

communication among agents. We prepare three agents, 

each of which is equipped with a recurrent neural network 

(RNN) to adjust the tentative strategy value in the pre-play 

communication stage. We evolved the connection weights 

of each RNN with an evolution strategy (ES) based on the 

payoff of IMG played among these agents. 

2 Interactive Minority Game (IMG) 

In the MG with N (odd) agents proposed by Challet and 

Zhang [1], the payoff of an agent i choosing alternative Ai is 

calculated as follows: 
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We propose the Interactive Minority Game by extending 

the MG on the following two points. First, we adopt a 

continuous strategy space instead of a binary one. The 

payoff of agent i with strategy value ai is calculated as 

follows: 
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This equation represents the situation as follows: The 

possible signs of the strategy value (positive or negative) 

correspond to the alternatives in the standard MG. Agents 

win the game if the sign of their strategy is the minority 

sign in the group. Furthermore, the strategy’s absolute value 

defines its “intensity”. Higher intensity values lead to both 

higher risk and higher reward. The winning (losing) agents 

obtain a positive (negative) payoff equal to the absolute 

value of their strategies. 

Secondly, we add a pre-play communication stage 

before the agents confirm their strategy. During this stage, 

agents can continuously adjust their strategy. The tentative 

strategy of agent i at time step t (= 0, 1, .., T - 1) is 

represented as ai (t) (ai (0) = 0). Each agent can adjust ai (t) 

gradually by ε (t), after observing others’ tentative 

strategies in the previous step. The final decision of agent i : 

ai is defined as ai (T), and used for calculation of payoffs. 
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Note that if ai (t) +ε(t) > 1(< -1), then ai (t + 1) = 1 (-1). 

In this study, we focus on the case of N = 3, the minimum 

number of agents for the MG. Fig. 1 shows an example 

game. The x-coordinate corresponds to the time step t and 

the y-coordinate represents ai (t) for each agent. 

3 MODEL 

3.1 Decision making mechanisms 

Every agent is equipped with a recurrent neural network 

(RNN) to decideε(t) at each step. The reason why we 

choose to use RNNs is to enable agents to make decisions 

appropriately depending not only on the current inputs, but 

also on past inputs: RNNs can use their internal memory to 

process arbitrary sequences of inputs. Each RNN has three 

layers (5 input units, 6 hidden units, 4 output units), and the 

units use a sigmoid activation function ( f (x) = 1 / (1 + e
-x 

)). 

For simplification of the model, RNNs do not have bias 

units. Two output units in the output layer are recurrently 

connected to two input units in the input layer. 

Every time step, the agent’s RNN receives five input 

values: its own current strategy value, the distance from the 

strategy values of the other two agents to its own, and the 

values from the two output units from the previous step. 

Two units in the output layer generate the values au and ad, 

which determine ε( t + 1) =ε(t) + (au – ad ) / 100. The 

remaining two output units are connected one-to-one to two 

of input units. 
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Fig. 1. A trial of IMG (N = 3, T = 1000). 

  

3.2 Evolutionary algorithm 

The full set of 54 connection weights in each RNN is 

encoded in the genotype of each agent and evolved using a 

simple type of Evolution Strategy (ES). The connection 

weights do not change during a trial. We assume three 

independent gene pools, each of which provides one agent 

in each trial, so the agents that interact in a game trial come 

from independently evolved gene pools. Each gene pool has 

np individuals.  

 

1. Generating the initial population 

np genes are generated in each gene pool using 

uniform random number U as an initial population. 

2. Evaluating individuals’ fitness 

We assemble np groups of three individuals each of 

which randomly selected from each gene pool without 

duplications. Three individuals in each group play 

IMG and receive the payoff. Individuals picked out 

from pools are restored to their original pools after the 

trial. This procedure of group assembly and game trial 

is repeated R times. The fitness of each individual is 

defined as an accumulation of fitness over R trials. 

3. Creating the next generation 
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The population in the next generation of each gene 

pool is composed as follows: First, we select ne best 

individuals from np individuals (the elites), and 

preserve them to the next generation. Then, each of 

elites contributes two copies of themselves to the next 

generation, and small random values from a normal 

distribution NR with a fixed standard deviation are 

added to each connection weight in the offspring. 

Finally, np-3ne individuals with randomly generated 

genotypes are added to the population. These 

evolutionary operations for selection and reproduction 

are performed on each gene pool independently. 

 

4 RESULTS 

We evolved the population for 10000 generations. We 

used the following parameter settings: T = 1000, np = 40, ne 

= 12, R = 40. Initial connection weights are drawn 

randomly from a uniform distribution U over [-1, 1], and 

mutation adds a random number from the normal 

distribution NR (0, 0.2
2
).  

First, we focus on how pre-play communication among 

agents develops during the early stages of the evolution 

process. Fig. 2 represents the average fitness of each gene 

pool and the average fitness of all individuals from the 0th 

generation to the 99th generation. We see a rapid increase in 

fitness in all gene pools. The average fitness reached 

approximately -5 at the 99th generation.  

Fig. 3 shows an example communication at the 50th 

generation. We see that the strategy value of one agent 

reached the upper limit and that of another agent reached 

the lower limit, while the remaining agent’s value remained 

near the boundary line between two signs (ai (t ) = 0). We 

focus on the agent whose strategy value remained near the 

boundary line. In the situation shown in Fig. 3, the 

strategies of the other two agents are on the upper and the 

lower area respectively, and they did not change their 

strategy values. Thus, the focal agent could not avoid 

ending up on the majority side, and so its payoff falls below 

0 regardless of which side it picks. The optimal behavior 

thus is to choose a strategy value as close to the boundary 

line as it can, and receive payoff of near 0. It was often 

observed in the simulations that the final strategies of the 

three agents settled on these three positions in the strategy 

space: the upper limit, the lower limit (high risk and high 

return strategy) and around the boundary line (low risk and 

low return strategy). This can be regarded as strategy 

differentiation among agents. 

The average payoff of each agent over R trials becomes 

near 0, if 1) the final strategy of the agent nearby the 

boundary line stays very close to it, and 2) its sign splits 

fifty-fifty between positive and negative. In this scenario, 

the situation in which the final strategies fall in the same 

area of the strategy space (yielding payoff far below 0) is 

avoided. In Fig. 2 we see an increase in average fitness 

from the initial generation to the 20th generation, likely due 

to the emergence of the strategy differentiation among 

agents.  
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Fig. 2. Evolution of fitness. 

 

Fig. 4 shows a typical communication from the 70th 

generation in which Agent 1 and Agent 3 can be seen to 

respond each other’s behavior. In Fig. 3, all agents initially 

lower their strategy values. Agent 3 (at around step 40), and 

Agent 1 (at around step 80) can be seen to switch their 

directions and start increasing their strategy values, in order 

to avoid the situation in which the strategy values of all 

agents remain negative, in other words, all lose. Once the 

strategy value of Agent 1 surpasses 0 (at around step 150), 

Agent 3 switches its direction again correspondingly. The 

most likely explanation for these behaviors of Agent 1 and 

Agent 3 is that they changed the increase or decrease in 

their strategy values in response to the strategy values of 

the others. 

Fig. 5 shows the communication among agents at the 

80th generation. We can observe that agents interacted with 

each other more actively than was the case in the earlier 

generations. This sort of oscillation was often observed in 

the simulation. 

Next, we classified the types of the pre-play 

communication among agents into the following three 

types: (a) Oscillation type (All agents cross the boundary 

line (ai (t) = 0) more than one time in the communication 

stage.) (b) Fork type (All agents do not satisfy the condition 

of (a), and each strategy value is as follows: one's strategy 

value is more than 0.8, another's strategy value is more than 

-0.1 and less than 0.1, and the other's strategy value is less 

than -0.8), (c) Others. Fig. 6 shows the occurrence rate of 

each communication type from the 0th generation to the 

99th generation. From this figure, we see that the Fork type 

occurs first, followed by the Oscillation type. We conducted 
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ten trials and confirmed this tendency in nine trials among 

them. This increase in communicative complexity should 

be worth noting as in the field of animal signaling it has 

been believed that complex communication cannot be 

evolved in conflicting situations [7]. 
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Fig. 3. Communication among agents at the 50
th

 generat

ion. 
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Fig. 4. Communication among agents at the 70
th

 generat

ion. 
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Fig. 5. Communication among agents at the 80
th

 generat

ion. 

 

4 CONCLUSIONS 

We extended the standard MG to a new game named 

Interactive Minority Game (IMG) by incorporating the two 

aspects: a continuous strategy space and a pre-play 

communication stage. As a result of evolutionary 

simulations in which each agent’s RNN evolves based on 

the payoff of 3-person IMG, we discovered that the strategy 

differentiation among agents where two agents adopt "high-

risk high-payoff" strategy and the rest one adopts "low-risk 

low-payoff". We also saw the emergence of various 

communications such as the adaptive adjustment behavior 

and oscillation of strategy values of agents. 
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Fig. 6. Occurrence rate of each communication type in 

each generation. 
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