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Abstract: In this paper, the performance analysis and parameter optimization for two typical decoupling controllers of the 4WS
vehicles are considered. Firstly, a new relationship between velocity and acceleration in effect on the nonlinear performance is
established. Then, for the decoupling controller of a quasi-linearized system, the optimized region of parameters is obtained, in
which the damping is bigger than one and eigenvalues are smaller than any given negative number. For the decoupling controller
of a linearized system, the necessary and sufficient condition that the overshoot and irritating are avoided is deduced by using a
new index. And the region, the measurement-error disturbance is attenuated to under any given positive number, is obtained for
any expected eigenvalues. Simulation results show that optimized controllers can improve the safety and comfort obviously.
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1 INTRODUCTION
Decoupling control can improve comfort and safety for

the vehicles. Thus its application has received a lot of at-
tention in recent years [1]-[13]. Taking yaw rate and lateral
speed as states, the decoupling control with velocity-varying
and robust performances of the quasi-linearized system is ad-
vocated in [1] and [12]-[13]. Based on linearized systems,
the diagonal decoupling is achieved in [3]. Taking yaw rate
and lateral velocity as states, the diagonal decoupling in [2]
and triangular decoupling in [5]-[7] are obtained.

There are high prices to be payed for using the decou-
pling control laws, e.g., damping and natural frequency are
changed, and the desired disturbance attenuation is hard to
be ensured. These prices may reduce the safety and comfort.
Hence, the following issues are considered in this paper

1. Are the system performance is affected by the same fac-
tors with different states?

2. Are there some special decoupling controllers which
can ensure the safety and comfort?

The first issue is answered by employing the linear sys-
tem theory and joint-point locus approach, and the second is
solved by optimizing some controller parameters. Models are
described in section 2. System performances are analyzed to
different states and the relationship to velocity and accelera-
tion is obtained in section 3. Optimization of two decoupling
controllers are discussed in section 4, one is used to control
quasi-linear model and the other is linear. Simulations are
shown in section 5 and conclusions are given in section 6.

2 VEHICLE MODEL
As mentioned in [7], the essential features of 4WS vehicle

steering dynamics can be described by the single-track model
as shown in Fig.1. If roll, pitch, and vertical dynamics are
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Fig. 1. Single-track model of 4WS vehicles

neglected, then the dynamics can be rewritten as [1]

m(v̇x − rvy) = ∑
i=r,l

Fxi − fa (1)

m(v̇y + rvx) = ∑
i=r,l

Fyi +Fy (2)

Jṙ = l f Fy f − lrFyr +Tz (3)

Two typical simplified models can be obtained by linear and
quasi-linear methods, which are,[

v̇y
ṙ

]
=

[
a11 a12
a21 a22

][
vy
r

]
+

[
b11 b12 b13
b21 b22 b23

]δ f
δr
Fl

 (4)

[
β̇
ṙ

]
=

[
ã11 ã12
ã21 ã22

][
vy
r

]
+

[
b̃11 b̃12 b̃13
b̃21 b̃22 b̃23

]δ f
δr
Fl

 (5)

where, Fl is the longitudinal acceleration/braking force. De-
tails of ai. j and ãi, j please refer to [1].

Remark 1. Parameters b11,b12,b21,b22 are taken as,

b11 =
c f

m
, b12 =

cr

m
, b21 =

c f l f

J
, b22 =−crlr

J
(6)

while system (4) are linearized, and taken as[
(1−γ)Fl0+c f

m
γFl0+cr

m

l f
(1−γ)Fl0+c f

J lr
γFl0+cr

J

]
(7)

while simplified by quasi-linearizing.

Remark 2. bi3, b̃i3 are almost zeros, and b̃i j, bi j satisfy

b̃1 j = vb1 j, b̃2 j = b2 j, j = 1,2 (8)
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3 PERFORMANCE ANALYSIS
Linear and nonlinear performances of systems (4) and (5)

are analyzed in this section.

3.1 Linear performance analysis
Stability, frequency and damping performances of sys-

tems (4) and (5) around equilibria pairs (v∗y ,r
∗)(to system (4))

or (β ∗,r∗)(to system (5)), are determined by

J(v∗y ,r
∗) =

[
−

c∗f +c∗r
mv −v−

c∗f l f −c∗r lr
mv

−
c∗f l f −c∗r lr

Jv −
c∗f l2

f +c∗r l2
r

Jv

]
(9)

J(β ∗,r∗) =

 −
c∗f +c∗r

mv −1−
c∗f l f −c∗r lr

mv2

−
c∗f l f −c∗r lr

J −
c∗f l2

f +c∗r l2
r

Jv

 (10)

Both above matrices have characteristic polynomial as

p(s) = ω2
0 +2D0ω0s+ s2 (11)

ω2
0 =

c∗r c∗f l2 +mv2(crlr − c f l f )

mJv2 (12)

2ω0D0 =
(c∗f + c∗r )J+m(c∗f l2

f + c∗r l2
r )

mJv
(13)

Thus (4) and (5) have the same linear performances as shown
in [6]. Furthermore, if use ar to replace lr and a f replace
l f , while v > 0 and the rear tyre isn’t working in decaying
region, i.e. rear tyres is driving wheels, then the stability
factor K = c f a f −crar, and the vehicle is understeering while
K > 0, neutralsteering while K = 0 and oversteering while
K < 0 [9]. And if denote a f as aN with K = 0, then

aNc f − (l −aN)cr = 0

Thus the vehicle is understeering while aN > l f and over-
steering while aN < a f . And if the center of mass trends to
rear axle, then the vehicle brings about oversteering, which
is a dangerous situation with high velocity. From above anal-
ysis, we know

Remark 3. The damping and frequency of systems (4) and
(5) mainly depend on vx. If vx is so big that D0 < 1, then
oscillation occurs and vehicle performance becomes badly.

Remark 4. The handling characteristics may be better while
a f is smaller than aN in a suitable range.

3.2 Nonlinear performance analysis
By considering the load distributions and friction coeffi-

cient factors in the equilibria, we have

Fyw f +Fywr = mrvx, Fyw f l f −Fywrlr = 0 (14)

Fyw f = µ f N f f f (α f ), Fywr = µrNr fr(αr) (15)

N f = mglr(1− ε f )/l, Nr = mgl f (1− εr)/l (16)

Then we can get

µ f (1− ε f )

µ
f f (α f ) =

µr(1− εr)

µ
fr(αr) =

vxr
µg

(17)

If λ0 , µ f (1−ε f )/µ , and κ , (µr(1−εr))/µ f (1−ε f ), then
λ0 corresponds to various road conditions which don’t effect
the nonlinear performance, whereas κ corresponds to load
distributions , and (4) , (5) may have both stable and unsta-
ble equilibrium points, and the saddle-node bifurcations with
κ ≤ 1, while both systems have only globally stable equi-
librium points with κ > 1 [8]. I.e. κ > 1 can ensure good
nonlinear performance. By simply deducing, we know

κ > 1 ⇔ (ha −h)ca

mh
v2

x + v̇x >
lrl f (µ f −µr)

lrµr + l f µ f
g (18)

Remark 5. From formula (18) we know, the velocity and ac-
celeration in the longitudinal direction are very important
to handling characteristics. And varying velocity model is
more suitable to reflect the actual physical performances of
the steering vehicles.

4 DECOUPLING RESULTS ANALYSIS AND

OPTIMIZATION
In this section, decoupling results of quasi-linearization

and linearization systems are analyzed and optimized in or-
der to improve vehicle safety and comfort further. As shown
in previous section, (4) and (5) have the same location per-
formances, thus we just talk about the system (4).

4.1 Quasi-linearization system
System (4) can be decoupled by decoupling laws [1]

u = F∗(x)+G∗(x)η , η = [η1 η2 η3]
T (19)

Then the quasi-linearization system is decoupled into[
ẋi
ẍi

]
=

[
0 1

ai1 ai2

][
xi
ẋi

]
+

[
0
1

]
ηi, i = 1,2,3 (20)

To get good smooth performance and retain the convergence
rate, point (a1i,a2i) must be in the following region with any
constant k10 > 0, which is shown in Fig.2,

ai1 − k10ai2 − k2
10 < 0, and a2

i2 +4ai1 > 0 (21)

From Fig.2 we know, the feasible region of (a1i,a2i) is
smaller, while k10 becomes bigger. And linear ai1 − k10ai2 −
k2

10 = 0 and quadratic curve a2
i2 +4ai1 = 0 have only one in-

tersection point, which is (−k2
10,−2k10), i.e. for any k10 > 0,

points (a1i,a2i) which satisfy inequalities (21), always exist.

4.2 Linearization System
In [3], the decoupling controller is[

δc
δr

]
=

[
b11 b12
b21 b22

]−1 [−a12r−b11δp
−kpr− x1

]
(22)

ẋ1 = a21(aCGm−rv −q1δp + k1r+ x2) (23)

ẋ2 = k0(r−G(V,δp)δp),x1(0) = x2(0) = 0 (24)
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Fig. 2. Regions of (a1i,a2i), with constraints (21)

the controlled linearization system is decoupled into

v̇y = a11vy (25) ṙ
ż1
ż2

 =

−(kP −a22) 1 0
−k1 0 1
−k0 0 0

 r
z1
z2


+

 b21
q1

k0G(v)

δp(t)+

 0
a21
0

d(t) (26)

The transfer function from δp(s) to r(s) is

Tδp(s) =
b21s2 +q1s+ k0G(v)

s3 +(kP −a22)s2 + k1s+ k0
(27)

The characteristic polynomial is

P(s) = s3 +(kP −a22)s2 + k1s+ k0 (28)

To eigenvalues λi, there exist k1,i ∈ R, i = 1,2,3, so that

Tδp(s) =
k1,1

s−λ1
+

k1,2

s−λ2
+

k1,3

s−λ3
(29)

Hence, the relationship between r(t) and δp(t) is

r(t) = k1eλ1tδP(t)+ k2eλ3tδP(t)+ k3eλ3tδP(t) (30)

Thus, if there were complex λi, yaw rate arises overshoot
and oscillation. Then the safety and comfort will be worse.
So overshoot and oscillation must be avoided.

Theorem 1. For the cubic equation

ax3 +bx2 + cx+d = 0 (31)

Roots x1,x2,x3 are real and negative, if and only if κ0 ≤
0, b

a > 0, c
a > 0, and d

a > 0, where κ0 = B2 − 4AC,A =
b2 −3ac,B = bc−9ad and C = c2 −3bd.

Proof. From Cardano’s formula, the equivalent condition
that equation (31) only has real roots is κ0 ≤ 0. The roots
are multiple while κ0 = 0, and distinct while κ0 < 0. And
roots are negative while b

a > 0, c
a > 0,and d

a > 0 [15].

The performance of system (29) is decided by κ0. By em-
ploying theorem 1, all eigenvalues of subsystem (26) not only
negative but also smaller than −k20 equal to

kP −a22 > k20, k1 > 3k2
20, k0 > k3

20 (32)

((kP −a22)k1 −9k0)
2 −4((kP −a22)

2 −3k1)

(k2
1 −3(kP −a22)k0)< 0 (33)

And by complexly deducing, we know a sufficient condition
for the norm bound ∥Td(s)∥∞ ≤ γ is

(kP −a22)
2 −2k1 > 0, k2

1 −2k0(kP −a22)− γ−2 > 0 (34)

(t1t2 −9k2
0)

2 −4(t2
1 −3t2)(t2

2 −3k2
0t1)> 0 (35)

The above desired region of kP, k0 and k1 is shown as Fig.3,
where P0 = (kP − a22, k0, k1). From Fig.3 we know, the
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Fig. 3. Regions of P0 with constraints (32)-(35)

region becomes smaller with k20 increasing and γ tending to
zeros. Specifically, there aren’t k20 bigger enough or γ near
to zeros closely from over zeros direction, so that the region
doesn’t exist any longer. Such as, k0/k1 is taken as smaller
than 1 and (kP − a22)/k1 as a constant, then by choosing a
large enough kP −a22, inequalities (32)-(35) can be held.

5 SIMULATION
In this section, effects of optimized controllers are exam-

ined. The vehicle model BMW 735i is used [1]. The de-
sired track and lateral acceleration are shown in Fig.4. Fig.5
is the simulation of the decoupled system of [1]. Fig.6 and
Fig.7 are the decoupled system of [2]-[3], where Fig.6 is the
result without disturbance while Fig.7 is the attenuation re-
sult of measurement error disturbance of lateral acceleration
as d(t) = 0.1sin(26πt). The output and control signals may
be both oscillation, however the output signals may be over-
shoot, while decoupling controllers are without optimizing,
especially when the disturbance exists. But the overshoot
and oscillation are avoided, and the output and control sig-
nals become more smooth, as the controllers are optimized.
Furthermore, arbitrary attenuation of measurement error dis-
turbance is arrived by optimizing k1. So as Shown in simu-
lation results, the safety and comfort are improved further by
optimizing the parameters.

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13), 
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 438



0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4
motion track

x[m]

y[m
]

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
lateral acceleration

t[s]

ay
[g]

Fig. 4. Desired track and lateral acceleration
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Fig. 5. Steering maneuver of the decoupled system (20)
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Fig. 6. Steering maneuver of (25)-(26) without disturbing
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Fig. 7. Steering maneuver of (25)-(26) with disturbing

6 CONCLUSION
The 4WS vehicle performances have been analyzed and a

new relationship for nonlinear performance with varying vx
and v̇x has been given. Specifically, the optimization region
of a quasi-linearized system is obtained, in which eigenval-
ues can be assigned in any desired position and overshoot and
oscillation are avoided. Moreover, the necessary and suffi-
cient condition preventing overshoot and irritating of system
(25)-(26) is proposed and the optimization region is got, in
which any desired H∞ index γ and specified eigenvalues are
achieved with avoiding overshoot and oscillation. And the
simulation results show that the comfort and safety for the
vehicle driving are improved significantly.
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