
Constructing Obstacle-Based Triangularized Roadmap 
 

 JeongHyeon Wang1 and JuJang Lee2, Fellow, IEEE 
1Korea Advanced Institute of Science and Technology, Daejeon, Korea 
2Korea Advanced Institute of Science and Technology, Daejeon, Korea 

 

1jh_wang@kaist.ac.kr 
2jjlee@ee.kaist.ac.kr 

 
Abstract: This paper proposes an algorithm which makes roadmap quite fast using obstacle information. The proposed 
algorithm purposes to expand graphs which consist of edge and vertex based on obstacles. After the algorithm detects corner 
information, using Harris corner detection, keep all data and use it. The proposed algorithm consists of two parts, one is 
arranging initial nodes using space decomposition, and the other is constructing a graph from initial nodes. In this case, we 
assume that all the obstacles are polygon. And then we can detect corners of obstacles. Using this, connecting each node to 
visible corners, we can expand our graph. The proposed algorithm is quite simple and straightforward to understand and it has 
advantage of constructing fully-covered roadmap. This property has been verified through several experiments. 
 
Keywords: Central Voronoi Tessellation, PRM, Roadmap, Triangularize; 

 

1 INTRODUCTION 
Path planning is becoming an important one in the many 

of the fields such as indoor and outdoor mobile robot 
planning, underwater path planning, motion planning and 
so on. Also it increases needs for searching optimal path in 
any environments. 

Different from grid-based approach, the probabilistic 
roadmap method (PRM) is one of the typical sampling 
based approaches [1]. Contrary to Rapidly-exploring 
Random Trees (RRT), it deals with constructing multiple 
queries [2]. The PRM based planner searches for free 
spaces using two phases, a learning phase and a query 
phase. But efficiency of PRM is not good because it 
produces lots of redundant samples to maintain total 
connectivity and it also needs lots of sample points to reach 
whole connectivity. In order to solve this problem many of 
the sampling-based roadmap constructing method is 
proposed. In [3], [4] to increase connectivity of PRM, 
various sampling strategies such as narrow passage 
sampling, bridge test and so on are introduced. In [5], [6] 
creating useful cycles, It increases total connectivity and 
also controls the essential number of vertices. In [7], 
adopting new node sampling method, efficiency of 
probabilistic roadmap planner’s performance increases. 
From these papers, we can think about that how to construct 
simple and straightforward roadmap without including 
complex and burden tasks. That is the starting points of our 
idea.  

In this paper, we propose a new algorithm to construct 
the roadmap. The proposed method has two phases. First, in 
initializing phase, the algorithm randomly selects several 
points in the free space. But when we select this randomly, 
we cannot guarantee about well-distribution of this points. 
It is important to our proposed algorithm because after 
finishing initializing phase, we will use these points as start 
points and expand to free configuration space in the map. 
The more evenly distributed initial points, the better results 

in next step. The position of these initial points will be 
selected by the construction of Central Voronoi Tessellation 
(CVT) [8] in order to spread randomly chosen samples 
evenly. After evaluating well-distributed initial nodes, we 
use the Harris Corner Detector [9] to get information about 
geometric configuration of the environment. All the 
obstacles are approximated by polygon. So using Harris 
Corner Detector, we can find lots of corners and with these 
corners, we will explore uncovered region in the map.  

This paper is organized as follows. Section 2 describes 
the node distribution method using CVT. and using this 
result, Section 3 describes the proposed node expansion 
algorithm. An implementation and simulation results are 
presented in Section 4, and the discussion follows 

2 Node Initialization 
The proposed algorithm distributes initial nodes 

considering geometric information, using CVT construction 
process. Before explaining CVT, we introduce a voronoi 
tessellation first. Figure 1 shows an example of the voronoi 
tessellation. In this figure, there are two generators 𝑧1 and 
𝑧2. In this case, we can divide two regions 𝑉1 and 𝑉2. 
These two regions are divided by opposite sides of 
perpendicular bisector. This is voronoi tessellation. If there 
are more than two generators in constrained region, voronoi 
tessellation constructs regions for a number of generators in 
entire region. Furthermore we can define the center of mass. 
For example, given a region V in ℝ𝑛  and a density 
function 𝜌(𝑤) defined as 𝑤 ∈  𝑉, the center of mass 𝑍∗of 
V is given as follows.   

  𝑧∗ =  ∫
𝑤𝜌(𝑤)𝑑𝑤𝑉

∫ 𝜌(𝑤)𝑑𝑤𝑉

            (1) 

CVT is the special cases for the generators of voronoi sets 
and centers of mass in voronoi region do actually coincide. 
Figure 2 shows an example of the comparison about general 
voronoi tessellation and CVT. Left figure is general voronoi 
tessellation and right is CVT. Contrary to general voronoi 

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13), 
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 312



tessellation, CVT has almost well-distributed sample nodes. 
That’s why CVT needs to distribute generators regularly in 
our proposed algorithm. 

In the real construction process of the CVT, positions of 
nodes are updated iteratively until each position of the 
nodes is equivalent to each centroid of voronoi cells. The 
McQueen's algorithm [10] and Lloyd's algorithm [11] are 
well known process of constructing CVT. Algorithm 1 
describes McQueen's Algorithm in detail. The McQueen's 
algorithm doesn't require the construction of voronoi sets or 
centers of mass. Despite this, the points produced by 
McQueen's method converge to the generators of a CVT. 
However the problem with McQueen's method is that it 
samples only one point before it averages. So at worst, it 
takes more than millions of steps to obtain a CVT set of 
points from an initial set of points. The Lloyd's algorithm is 
also called K-Means algorithm in computer science. It may 
have better result than McQueen's algorithm under same 
constraints. Algorithm 2 describes Lloyd's Algorithm in 
detail. Compared to McQueen's algorithm, it also has a 
heavy computational burden because the samples in the 
voronoi region should be calculated with generators in 
every iterations. But in my algorithm, it doesn't matter how 
many times to iterate this algorithm to approximate exact 
center of voronoi regions. Just we spread out our initial 
generators appropriately. There is no need to step out many 
times. 

When the iteration of Lloyd's algorithm ends, there is a 
probability that center of voronoi region is on the obstacle 
regions. In this case, we cannot use this initial position to 
expand nodes and edges from this point. Because it doesn't 
Algorithm 1 McQueen’s Method 

(Random sampling and Averaging). 
1. Start with some initial set of K points {𝑍𝑖}𝑖=1𝐾  
2. Sample another point w 
3. Determine which of the 𝑧𝑖’s is closest to the w 
4. Find the average of w and the 𝑧𝑖 closest to it. 
5. Replace the 𝑧𝑖 used in the averaging by the average 
point. 

 
Algorithm 2 Lloyd’s Method 
1. Start with some initial set of K points {𝑍𝑖}𝑖=1𝐾  
2. Construct the voronoi tessellation {𝑉𝑖}𝑖=1𝐾 of omega 
associated with the points {𝑍𝑖}𝑖=1𝐾  
3. Construct the centers of mass of the voronoi regions 
{𝑍𝑖}𝑖=1𝐾  found in Step 1; these centroids are the new set of 
points {𝑍𝑖}𝑖=1𝐾  
4. If under some convergence criterion, quit otherwise go 
base to step 2. 
satisfy the properties that all the expansions are in the free 
configuration spaces. So we use the Lloyd's algorithm once 
again only in that region. Choose any two generators in that 
region and iterate Lloyd's algorithm again. This step will be 
end when all generators are on the free configuration space. 

3 Node Expansion 
The purpose of proposed algorithm is to construct 

roadmap covering entire map so that wherever the start and 
goal position is, total feasibility of expected path will be 
guaranteed. Before we start next step, we deal with some 
useful and needed properties to construct roadmap 

 Assume all the obstacles are estimated by polygon.  

 Entire free space will be surrounded by triangles. 

 Expansion algorithm will construct triangles 
iteratively keeping triangularity. 

The reason why we estimate obstacle to polygon is to 
divide entire free space with triangles. The advantage of 
triangular-based approach is as follows. 

 It represents detailed areas better and it doesn't 
complicate open areas. 

 Triangulation has much fewer cells and is more 
accurate than grid-based approach. 

 It can deal with non-point objects quite easier than 
grid-based approach. 

Under these advantages, we can construct triangular-based 
roadmap satisfying properties. Algorithm 3 describes main 
algorithm of construction step. Key idea of algorithm is as 
follows. First find visible corners using Harris Corner 
Detectors and find convex-hull of corners. Convex-hull is 
the smallest convex set that contains corners. If edge of 
convex-hull is on the free space, not on the obstacle, add 
new vertex in the middle of two points. If possible, connect 
to other vertex which has already made before. The 
proposed construction step will be classified by three cases. 
One is just add vertex and edge, another is first case plus 
connects toward other vertex made before and the other is  

 
Figure 1 example of voronoi tessellation 

 
Figure 2 Comparison between random sampling and CVT 

 
Figure 3 positions of center of mass are updated using Lloyd's 
algorithm 

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13), 
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 313



Algorithm 3 Construct Roadmap(E, V, Xset, initialCentroids) 
Begin 

if firstIteration  and  ∃ Visibility(initialCentroids) then 
removeVisibleNodes(initialCentroids) 
V ← V ∪ {initialCentroids} 

Endif 
Xset ← {initialCentroids} 
do 

[CornerSet, numOfVisitingTime]  
← connectVisibleCorners (Xset(i), numOfVisitingTime) 
makeConvexHull(CornerSet) 
if numOfVisitingTime >= 2 then 

if findAlreadyMadeVertex(CornerSet,  
V, numOfVisitingTime) == TRUE then 

addEdge(E, V, Xset, CornerSet) 
Else 

addVertexAndEdge(E, V, Xset, CornerSet) 
Endif 

Else 
addVertexAndEdge(E, V, Xset, CornerSet) 

Endif 
While isEmpty(Xset) == TRUE 

End 
first case plus check possibility of existing vertex before. 

Add vertex and edge. 
Figure 4 shows how to add vertex and edge in the first 

case. Before start construction roadmap, check 
geographical condition of initial nodes. Although we spread 
initial nodes   regularly, there will be a problem when a 
couple of initial   vertices are visible each other. It will 
break up whole triangularity when we expand from these 
nodes. So we must ensure that each initial node is not 
visible. In the first step, pre-expanded initial node will 
invade the area where other initial node has to be covered. 
First, detect visible corners from frontier vertex using 
Harris Corner and update the number of visiting times for 
each node. In this case, there are no corners that the number 
of visiting time is more than two. That is, it is the first time 
to visit whole corners. And check if adding new vertex in 
the middle of the corners on the convex-hull is possible. In 
figure 4, green stars are on the line of obstacle, so discard 
them. But brown star is on the free space. So add new edge 
from frontier vertex and add new edge. 

Add edge to the vertex made before. 
Figure 5 shows how to add edge to the vertex made 

before. Other step is same as the first case. But in this 
figure, when checking the number of visiting time in all 
visible corners, there are two corners that the number of 
visiting time is more than two. That is, other vertices had 
already visited before. So there can be a probability of 
existing vertex in the middle of two points. If find them, 
add edge to that vertex made before and other step is the 
same as first case. If there is more than three corners which 
satisfies this cases, we make a temporary vertex set with 
that corners and check any vertex is exists in that set. Other 
step is same. 

Possibility that vertex exists. 
Figure 6 shows how to consider when there is a 

possibility of existing vertex. When detecting visible 
corners from frontier vertex, there exist two corners, left top 

 

 

 
and right top, that the number of visiting time is more than 
two in this figure. So there can be a probability of existing 
vertex in the middle of two points. Same as second case, 
check if edge exists in the middle of two points. But in this 
case, there is no vertex between two corners. So there is no 
need to add new edge toward that. Other step is the same as 
first case. 

4 Simulation Results and Discussion 
All our experiments were run with MATLAB in 

Windows 7 Service Pack1 on an Intel(R) Core(TM) i5 
2.67GHz 2.66GHz with 4.00GB of internal memory. The 
results are as follows. 

Simulation Results 
Figure 7 describes several results. In this figure, result (a) 

and (b) are the results based on the same obstacle. Blue 
lines are edges and blue points are vertices. Red line is 
convex hull and in each iteration, we plotted to see whether 

 
Figure 4 Roadmap construction case: Add vertex and edge 

 
Figure 5 Roadmap construction case: Add edge to the vertex made 
before 

 
Figure 6 Roadmap construction case : Possibility of existing vertex 

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13), 
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 314



it finds convex hull of corners or not. And small dot in the 
background tells about a result of Lloyd’s algorithm. In this 
figure there are two colors so clustered in two parts. It also 
represents that even though the same environment is given, 
it is possible to construct different roadmap. Additionally 
constructing roadmap relies on the position of initial nodes. 
That’s why the result (a) and (b) have different figure. 
Result (c) and (d) are the examples of different number of 
initial nodes. 

Figure 8 also describes several results in more 
complicated environment. It shows that whether the 
complexity of environment increases, we construct well-
covered roadmap. 

Evaluation 
But in these results, quite inefficient connections are 

founded. In figure 7-(c), right top two vertices are not 
connected. Because two vertices have same parents node. If 
we use this algorithm to real path planning, for example, we 
can always find a feasible path but not the shortest path in 
this roadmap. That’s why we need to extra refinement step 
to construct more realistic roadmap. For example, using 
many search algorithms, we can find shorter path to 
evaluate each vertex whether extra connection will be 
needed or not. 

Furthermore, there is no appropriate definition of 
number of initial nodes. For my experiment, the less 
complexity is, the fewer initial nodes will be needed. In 
other words, in the complex geometric environments, 
arranging more initial nodes is better than arranging only 
one or two nodes. But it is the conclusion about our several 
simulation results. It seems to be needed to certain rule to 
control the number of initial nodes. 

REFERENCES 
[1] L. E. Kavraki, P. Svestka, J. Latombe and M. H. 

Overmars, “Probabilistic Roadmaps for Path Planning 
in high-dimensional configuration spaces,” in IEEE 
Transactions on Robotics and Automation, vol. 12, no. 
4, pp. 566-580, 1996 

[2] S. LaValle, “Rapidly-exploring random trees: A new 
tool for path planning,” CS. Dept., Iowa State Univ., 
Ames, IA, Tech. Rep. TR 98-11, 1998 

[3] Z. Sun, D. Hsu, T. Jiang, H. Kurniawati and John H. 
Reif, “Narrow passage Sampling for Probabilistic 
Roadmap Planning,” in IEEE Transactions on Robotics. 
Vol. 21, No. 6, pp. 1105-1115, 2005 

[4] M. Morales, S. Rodriguez, Nancy M. Amato, 
“Improving the Connectivity of PRM Roadmaps,” in 
International Conference on Robotics and Automation, 
pp 4427-4432, 2003. 

[5] D. Nieuwenhuisen and M. Overmars, “Useful cycles in 
probabilistic roadmap graphs,” in IEEE International 
Conference on Robotics and Automation, pp. 446-452, 
2004 

[6] R. Geraerts and Mark H. Overmars, “Creating High-
quality Roadmaps for Motion Planning in Virtual 
Environments,” in IEEE/RSJ International Conference 
on Intelligence Robots and Systems, 2006. 

[7] B. Park, W.K. Chung, “Adaptive Node Sampling 
Method for Probabilistic Roadmap Planners,” in Proc. 
of IEEE/RSJ International Conference on Intelligent 
Robots and Systems, pp. 4399-4405, 2009 

[8] Q. Du, V. Faber and M. Gunzburger, “Central Voronoi 
Tessellations: Applications and Algorithms,” in SIAM 
Review, vol. 41, no. 4, pp.637-676, 1999 

[9] C. Harris and M. Stephens, “A Conbined Corner and 
Edge Detector,” in proc. of The Fourth Alvey Vision 
Conference, pp. 147-151, 1988 

[10] J. McQueen, “Some methods for classification and 
analysis of multivariate observations,” in Proceedings, 
Fifth Berkeley Symposium on Mathematical Statistics 
and Probability, Vol. 1, pp. 281-297, 1967. 

[11] S. Lloyd, “Least square quantization in PCM,” in IEEE 
Transactions on Information theory, Vol. 28, pp. 129-
137, 1982 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7 Four results of constructing roadmap under same 
environment and different number of initial nodes 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8 Four results of constructing roadmap more complicated 
environment and different number of initial nodes 
 

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13), 
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 315




