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Abstract: This article presents a method of addition and integration of q-values to reduce the number of states and memory 

usage based on Q-learning algorithm in continuous state space using the concept of Voronoi space division. It also aims to 

show the improvement of learning efficiency when it is compared to the existing method, such as lattice. We constructed an 

experimental model to examine these scenarios. This model is based on continuous state and discrete action of feeder mouse. 

The results indicate that the proposed method greatly improve than normal Q-learning. As a method of space division, we used 

Voronoi diagram that is a general space division method. However, Voronoi diagram has a lot of flexibility therefore it 

becomes a problem to decide the position of q-values. Therefore, we presented the addition method in order to realize the 

position of q-values using LBG algorithm though there are many methods for adaptive vector grouping. In addition, we 

integrate the q-values which have the same action selections using Delaunay tessellation technique to find the nearest q-values.  
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1 Introduction 

There are several kinds of learning methods but 

reinforcement learning (RL) is the most suitable method in 

machine learning that deals with the decision to take an 

action using an agent at discrete time steps and expected 

that would be useful anywhere in the future [1]. RL 

methods attempt to improve the agent’s decision-making 

policy over the time. The agent’s goal is to get as much 

reward as it can over the long run. 

In this paper, we present an experimental study in 

continuous state space based on Q-learning algorithm with 

addition and integration of q-values method using Delaunay 

tessellation technique, addition method of q-values using 

LBG algorithm, and normal lattice arrangement. It also 

aims to show the improvement of learning efficiency using 

the proposed method when it is compared to the existing 

method, such as lattice.  

We constructed a computational model to examine these 

scenarios. In the model, an agent aims to get as much 

reward as possible during a specific period, and observes 

the angle (θ) and the distance (d) to reward-area. If the 

agent reaches to the reward-area, the agent gets a reward of 

+1 and the position of agent is randomly changed.  

2 Methods and procedures 

2.1 Q-Learning algorithm 

There are several ways to implement the learning 

process. However, Q-learning algorithm due to Watkins [2] 

is a policy for estimating the optimal state-action value, and 

one of the most fundamental in RL. Q-learning can also 

apply in many practical applications based on the idea of 

expected future reinforcements, and can be estimated by the 

function of each action in each state. However, it works 

only for discrete state space, and difficult to handle in 

continuous state space because of curse of dimensionality 

problem therefore it needs to discretize the state space into 

a lot of smaller discrete regions when we treat such 

continuous cases. 

Curse of dimensionality means if the number of state 

and action variables increase, the size of the Q-Table used 

to store Q-values grows exponentially and the learning 

speed decrease suddenly. 

In general Q-learning, every action and state pair have 

their own Q-value denoted by      . , and it stores in a 

table called Q-Table. It looks like a square lattice in 2-

dimesions. These Q-values are initialized to small random 

numbers and gradually change toward the optimal values 

through learning. The Q-value is updated in taking the 

maximum Q-value of next state using this following 

equation.  

 

 

 

In this equation, a state in time t is st , Q-value of action 

at in the state st is  
     

,   is the learning rate,  is the 

discount rate, and r
 
is a reward. Furthermore, max Q(st+1,a) 

shows the maximum Q-value of next state in time t+1.  
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2.2 Voronoi diagram 

Voronoi diagram is used in our approach to partitions 

space into cells or a number of regions, where each region 

consists of all points that are closer to one site than to any 

other. It can also be used to perform nearest-neighbor 

searches. As a simple illustration, show in figure 1. Voronoi 

regions are bounded by line segments and Voronoi edge is a 

bisector of two sites whose regions are adjacent.  

2.3 Addition of q-values 

In the first stage of addition process, we put the 

temporary points into lattice structure on state space firstly. 

When the learning process is started, we save the state 

transition vector (STV) that enters from the position of the 

agent to the reward area on action space. If we get 1000 

STV or more, we quantize or group those STV by 

continuously taking the same action using LBG algorithm 

(section 2.3.1). Furthermore, we seek representative vectors 

and describe STV groups as representative vectors. 

Additionally, generate the new point at the place of each 

representative vectors. Moreover, delete the temporary 

points in which new points are added. A first-stage 

formation of addition is illustrated in figure 2.  

In the second stage of addition, we save STV again that 

come from temporary points to new points of the first stage 

output. Nevertheless, we do not take STV that come from 

new points to new points. In addition, generate the new 

points at the position of the representative vectors and 

repeat the above process. In algorithm, a new point is put 

on the position of a suitable multiple at the direction of 

representative state transition vectors but we do not judge 

yet whether that position is really appropriate location or 

not. Figure 3 shows the image of addition of q-values. 

2.3.1 LBG algorithm 

We used LBG (Linde-Buzo-Gray) algorithm for vector 

quantization. It is like a clustering algorithm which takes a 

set of input vectors as input and generates a representative 

subset of vectors with a quantum vector. The modification 

of adaptive vector quantization method was introduced 

Fig.4. Initial state of vector quantization 

Fig.1. Voronoi diagram in a random set of point

s 

Fig.2. First-stage of q-values addition 

Fig.3. An image of q-values addition 
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enhanced LBG (Patane & Russo, 2001) [3], and adaptive 

incremental LBG (Shen & Hasegawa, 2006) [4]. LBG 

algorithm is as  

1. Collect input vectors.  

2. Initiate quantum vector at random.  

3. Make group that input vectors belongs to the cluster of 

nearest quantum vector that yields minimum distance. 

4. Shift quantum vector to the gravity center of the group 

dividing the own coordinates by the number of input 

vectors. 

5. Move quantum vector in random direction and repeat 

the process in several times until the amount of 

quantum vector is less than a threshold value of 0.1.  

The convergence of LBG algorithm depends on the 

initial quantum vector and the threshold in implementation.  

Figure 4 describes an initial state of vector quantization 

algorithm. The input vectors are marked with red and 

quantum vector are marked with blue. Figure 5 obtained by 

using the above mentioned algorithm.  

2.4 Integration of q-values 

There are five conditions to integrate q-values.  

(1) both two points must be new added points. 

(2) Those two adjoining points must take the same optimal 

action (Figure 6).  

(3) Both two optimal actions have not changed over the 

number of 10,000 action times in 500,000 integrated 

timing of new points. 

(4) Both two new points are not already used for 

integration. 

(5) Start the integration process after the number of q-

values is added to 300 as a restriction of integration 

theory and reduces to 169.  

A new point is added to the center of adjoining point, 

and those two adjoining points are deleted. The key point of 

our integration method is to integrate same actions. 

2.4.1 Delaunay tessellation algorithm 

We applied a Delaunay tessellation (DT) technique to 

integrate the closest q-values. Delaunay tessellation is 

another fundamental computational geometry structure and 

dual tessellation of Voronoi diagram. DT is the straight-line 

dual of the Voronoi diagram obtained by joining all pairs of 

points belongs to the set. In our algorithm, we assume that 

the number of points are three or more but finite. 

All triangles of the Delaunay triangulation are obtained 

by connecting the adjoining points. Then, we draw a 

hypercube rectangle containing all points that adjacent to 

nearest point and generate a random point inside of 

inclusive rectangle. After that, it finds the connection of 

nearest point and second-nearest point by measuring the 

distance from that random point. Finally, two nearest points 

with high mark are connected. An example of java applet 

animation of Delaunay tessellation is shown in figure 7. 

Fig.5. Illustration of the LBG vector quantization  

Fig.7.Java applet animation of Delaunay tessellation

  

Fig.6. Type of actions on state space for integration 
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3 Experiments 

In the simulation, an agent is supposed to head toward 

the reward-are. We call this model “bait view world”, also 

called “non-coincidence of state space and action space 

model”, shown in figure 8. An agent gets a reward when it 

enters the reward-area and the agent’s position change 

randomly on this bait view world. The objective of agent is 

to get as much reward as possible during a specific period. 

This model is based on continuous state and discrete action 

of feeder mouse.  

The agent observes the angle and distance to reward-

area as shown in figure 9 and these 2 input values construct 

the 2-dimensional state space. The agent has 3-types of 

control actions selection; 1) go straight ahead, left rotation 

and right rotation. Each action is displayed by color “red”, 

“green” and “blue” (Fig 6). The agent normally selects the 

next action which has a maximum Q-value but sometimes 

selects the next action at random. 

We conducted the experiments with 100,000 continuous 

learning times make one “episode” and executed 160 

episodes in one “experiment”. We did 10 trials for each 

episode by changing the random initial seed and took an 

average. The learning rate α was set to 0.1 and discount rate 

γ was set to 0.9.  

3.1 Experimental results 

We examined the performance of the following several 

different methods in a stationary situation of reward-area 

through the computer simulations. These are 1) lattice 

arrangement of normal Q-learning on discrete state space, 

2) implementation of addition method using LBG algorithm, 

and 3) implementation of integration method using 

Delaunay tessellation technique on continuous state space. 

Figure 10 shows the result of these three experiments. 

4 Conclusions 

We presented the addition and integration method of q-

values on continuous state space in order to realize the 

position of Voronoi points and to reduce the number of 

states and to speed up the learning efficiency. Moreover, we 

investigated the performance and efficiency of our 

proposed methods using Bait View World experimental 

model. As a result of experiments, the number of state 

decreases greatly and our proposed methods give good 

results in simulation. However, we occurs the over-

integration problem though the number of states has 

decreased and the learning speed is suddenly decreased at 

the halfway. Therefore, we need to consider about this 

problem and it is need to able to change the integrated 

timing adaptively. Furthermore, we applied Voronoi 

diagram, LBG algorithm and Delaunay Tessellation 

technique in this study. 
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Fig.9. 2-input values for experimental model 

Fig.8. Bait View World experimental model 

Fig.10. Experimental results of 3-methods 
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