
A proposition of addition and integration of q-values in Q-Learning

Kathy Thi Aung

1
, Takayasu Fuchida

2

1,2
Kagoshima University, Kagoshima 890-0065, Kohrimoto 1-21-40, Japan

1,2
Graduate School of Science and Engineering, Department of System Information Science

(Tel: 81-99-285-3408, Fax: 81-99-285-8464)

1
kathythiaung@gmail.com ,

2
fuchida@ibe.kagoshima-u.ac.jp

Abstract: This article presents a method of addition and integration of q-values to reduce the number of states and memory

usage based on Q-learning algorithm in continuous state space using the concept of Voronoi space division. It also aims to

show the improvement of learning efficiency when it is compared to the existing method, such as lattice. We constructed an

experimental model to examine these scenarios. This model is based on continuous state and discrete action of feeder mouse.

The results indicate that the proposed method greatly improve than normal Q-learning. As a method of space division, we used

Voronoi diagram that is a general space division method. However, Voronoi diagram has a lot of flexibility therefore it

becomes a problem to decide the position of q-values. Therefore, we presented the addition method in order to realize the

position of q-values using LBG algorithm though there are many methods for adaptive vector grouping. In addition, we

integrate the q-values which have the same action selections using Delaunay tessellation technique to find the nearest q-values.

Keywords: Q-Learning, Voronoi Diagram, LBG algorithm, Delaunay Tessellation technique

1 Introduction

There are several kinds of learning methods but

reinforcement learning (RL) is the most suitable method in

machine learning that deals with the decision to take an

action using an agent at discrete time steps and expected

that would be useful anywhere in the future [1]. RL

methods attempt to improve the agent’s decision-making

policy over the time. The agent’s goal is to get as much

reward as it can over the long run.

In this paper, we present an experimental study in

continuous state space based on Q-learning algorithm with

addition and integration of q-values method using Delaunay

tessellation technique, addition method of q-values using

LBG algorithm, and normal lattice arrangement. It also

aims to show the improvement of learning efficiency using

the proposed method when it is compared to the existing

method, such as lattice.

We constructed a computational model to examine these

scenarios. In the model, an agent aims to get as much

reward as possible during a specific period, and observes

the angle (θ) and the distance (d) to reward-area. If the

agent reaches to the reward-area, the agent gets a reward of

+1 and the position of agent is randomly changed.

2 Methods and procedures

2.1 Q-Learning algorithm

There are several ways to implement the learning

process. However, Q-learning algorithm due to Watkins [2]

is a policy for estimating the optimal state-action value, and

one of the most fundamental in RL. Q-learning can also

apply in many practical applications based on the idea of

expected future reinforcements, and can be estimated by the

function of each action in each state. However, it works

only for discrete state space, and difficult to handle in

continuous state space because of curse of dimensionality

problem therefore it needs to discretize the state space into

a lot of smaller discrete regions when we treat such

continuous cases.

Curse of dimensionality means if the number of state

and action variables increase, the size of the Q-Table used

to store Q-values grows exponentially and the learning

speed decrease suddenly.

In general Q-learning, every action and state pair have

their own Q-value denoted by . , and it stores in a

table called Q-Table. It looks like a square lattice in 2-

dimesions. These Q-values are initialized to small random

numbers and gradually change toward the optimal values

through learning. The Q-value is updated in taking the

maximum Q-value of next state using this following

equation.

In this equation, a state in time t is st , Q-value of action

at in the state st is

,  is the learning rate, is the

discount rate, and r

is a reward. Furthermore, max Q(st+1,a)

shows the maximum Q-value of next state in time t+1.

),(tt asQ

)),(),(max(),(),(1 ttt
a

tttt asQasQrasQasQ  

),(tt asQ 

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13),
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 304

mailto:1kathythiaung@gmail.com
mailto:2fuchida@ibe.kagoshima-u.ac.jp

2.2 Voronoi diagram

Voronoi diagram is used in our approach to partitions

space into cells or a number of regions, where each region

consists of all points that are closer to one site than to any

other. It can also be used to perform nearest-neighbor

searches. As a simple illustration, show in figure 1. Voronoi

regions are bounded by line segments and Voronoi edge is a

bisector of two sites whose regions are adjacent.

2.3 Addition of q-values

In the first stage of addition process, we put the

temporary points into lattice structure on state space firstly.

When the learning process is started, we save the state

transition vector (STV) that enters from the position of the

agent to the reward area on action space. If we get 1000

STV or more, we quantize or group those STV by

continuously taking the same action using LBG algorithm

(section 2.3.1). Furthermore, we seek representative vectors

and describe STV groups as representative vectors.

Additionally, generate the new point at the place of each

representative vectors. Moreover, delete the temporary

points in which new points are added. A first-stage

formation of addition is illustrated in figure 2.

In the second stage of addition, we save STV again that

come from temporary points to new points of the first stage

output. Nevertheless, we do not take STV that come from

new points to new points. In addition, generate the new

points at the position of the representative vectors and

repeat the above process. In algorithm, a new point is put

on the position of a suitable multiple at the direction of

representative state transition vectors but we do not judge

yet whether that position is really appropriate location or

not. Figure 3 shows the image of addition of q-values.

2.3.1 LBG algorithm

We used LBG (Linde-Buzo-Gray) algorithm for vector

quantization. It is like a clustering algorithm which takes a

set of input vectors as input and generates a representative

subset of vectors with a quantum vector. The modification

of adaptive vector quantization method was introduced

Fig.4. Initial state of vector quantization

Fig.1. Voronoi diagram in a random set of point

s

Fig.2. First-stage of q-values addition

Fig.3. An image of q-values addition

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13),
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 305

enhanced LBG (Patane & Russo, 2001) [3], and adaptive

incremental LBG (Shen & Hasegawa, 2006) [4]. LBG

algorithm is as

1. Collect input vectors.

2. Initiate quantum vector at random.

3. Make group that input vectors belongs to the cluster of

nearest quantum vector that yields minimum distance.

4. Shift quantum vector to the gravity center of the group

dividing the own coordinates by the number of input

vectors.

5. Move quantum vector in random direction and repeat

the process in several times until the amount of

quantum vector is less than a threshold value of 0.1.

The convergence of LBG algorithm depends on the

initial quantum vector and the threshold in implementation.

Figure 4 describes an initial state of vector quantization

algorithm. The input vectors are marked with red and

quantum vector are marked with blue. Figure 5 obtained by

using the above mentioned algorithm.

2.4 Integration of q-values

There are five conditions to integrate q-values.

(1) both two points must be new added points.

(2) Those two adjoining points must take the same optimal

action (Figure 6).

(3) Both two optimal actions have not changed over the

number of 10,000 action times in 500,000 integrated

timing of new points.

(4) Both two new points are not already used for

integration.

(5) Start the integration process after the number of q-

values is added to 300 as a restriction of integration

theory and reduces to 169.

A new point is added to the center of adjoining point,

and those two adjoining points are deleted. The key point of

our integration method is to integrate same actions.

2.4.1 Delaunay tessellation algorithm

We applied a Delaunay tessellation (DT) technique to

integrate the closest q-values. Delaunay tessellation is

another fundamental computational geometry structure and

dual tessellation of Voronoi diagram. DT is the straight-line

dual of the Voronoi diagram obtained by joining all pairs of

points belongs to the set. In our algorithm, we assume that

the number of points are three or more but finite.

All triangles of the Delaunay triangulation are obtained

by connecting the adjoining points. Then, we draw a

hypercube rectangle containing all points that adjacent to

nearest point and generate a random point inside of

inclusive rectangle. After that, it finds the connection of

nearest point and second-nearest point by measuring the

distance from that random point. Finally, two nearest points

with high mark are connected. An example of java applet

animation of Delaunay tessellation is shown in figure 7.

Fig.5. Illustration of the LBG vector quantization

Fig.7.Java applet animation of Delaunay tessellation

Fig.6. Type of actions on state space for integration

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13),
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 306

3 Experiments

In the simulation, an agent is supposed to head toward

the reward-are. We call this model “bait view world”, also

called “non-coincidence of state space and action space

model”, shown in figure 8. An agent gets a reward when it

enters the reward-area and the agent’s position change

randomly on this bait view world. The objective of agent is

to get as much reward as possible during a specific period.

This model is based on continuous state and discrete action

of feeder mouse.

The agent observes the angle and distance to reward-

area as shown in figure 9 and these 2 input values construct

the 2-dimensional state space. The agent has 3-types of

control actions selection; 1) go straight ahead, left rotation

and right rotation. Each action is displayed by color “red”,

“green” and “blue” (Fig 6). The agent normally selects the

next action which has a maximum Q-value but sometimes

selects the next action at random.

We conducted the experiments with 100,000 continuous

learning times make one “episode” and executed 160

episodes in one “experiment”. We did 10 trials for each

episode by changing the random initial seed and took an

average. The learning rate α was set to 0.1 and discount rate

γ was set to 0.9.

3.1 Experimental results

We examined the performance of the following several

different methods in a stationary situation of reward-area

through the computer simulations. These are 1) lattice

arrangement of normal Q-learning on discrete state space,

2) implementation of addition method using LBG algorithm,

and 3) implementation of integration method using

Delaunay tessellation technique on continuous state space.

Figure 10 shows the result of these three experiments.

4 Conclusions

We presented the addition and integration method of q-

values on continuous state space in order to realize the

position of Voronoi points and to reduce the number of

states and to speed up the learning efficiency. Moreover, we

investigated the performance and efficiency of our

proposed methods using Bait View World experimental

model. As a result of experiments, the number of state

decreases greatly and our proposed methods give good

results in simulation. However, we occurs the over-

integration problem though the number of states has

decreased and the learning speed is suddenly decreased at

the halfway. Therefore, we need to consider about this

problem and it is need to able to change the integrated

timing adaptively. Furthermore, we applied Voronoi

diagram, LBG algorithm and Delaunay Tessellation

technique in this study.

References

[1] Sutton RS, Barto AG (1998), Reinforcement learning an

introduction, MIT Press, Cambridge.

[2] Watkins CJCH, Dayan P. Technical notes: Q-learning.

Machine Learning 1992;8:279-292.

[3] G.Patane and M.Russo, The enhanced LBG algorithm,

In proceedings of Neural Networks, 2001, pp.1219-1237.

[4] F.Shen, O.Hasegawa, An adaptive incremental LBG for

vector quantization, Neural Networks 19 (2006) 694-704.
Fig.9. 2-input values for experimental model

Fig.8. Bait View World experimental model

Fig.10. Experimental results of 3-methods

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13),
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 307

