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Abstract: This paper presents a dynamic model for a micropump and microneedle integrated system for diabetes care. A 
novel data-driven two degree-of-freedom control mechanism is proposed for regulating blood glucose concentration to 
shorten regulating time while maintaining the stability of the system in the presence of model uncertainties and 
unexpected disturbances. Exact feedforward linearization, gain scheduling, and data-driven planning technique are 
applied to improve regulation performance as well as robustness. Simulation results indicate that the proposed control 
has great potential in drug delivery problems. 
 

 
1 Introduction 
 
Diabetes mellitus is a disease in which the patient has 

difficulty regulating blood glucose. Diabetes may affect 

the functioning of many physiological systems, causing 

everything from retinopathy and circulatory problems, 

to nephropathy and heart disease. While diabetes can be 

treated with insulin, the dosage of insulin must be 

strictly regulated - excess insulin can cause 

hypoglycemia, whereas insufficient insulin can cause 

hyperglycemia. 

Fig. 1 shows a schematic drawing of a insulin 

infusion microdevice consisting of a piezoelectric 

micropump, multiple silicon microneedles, an insulin 

reservoir, a membrane, wireless telemetry, and a remote 

control component. This control system regulates blood 

glucose levels by driving the piezoelectric micropump 

based on glucose sensor measurements.  Very generally, 

sensor readings are passed via wireless telemetry to the 

controller, which then drives the micropump, causing 

the release of insulin from the reservoir, through the 

microneedles into the patient’s bloodstream.  

The challenges of controller design mainly come 

from three areas. First, these systems usually have 

serious nonlinearities, which are poorly estimated by the 

corresponding linearized systems. Second, the output 

measurements often have large model uncertainties, 

disturbances, and slow sampling rates. Third, in the 

event of an accidental insulin overdose, there is no way 

to retrieve the insulin to avoid hypoglycemia.  

 

Fig. 1 A schematic drawing of a micropump and 

microneedle integrated for controlled insulin delivery 

 

Recently, advanced control mechanisms have been 

applied for glucose control, including PID [1, 2], model 

predictive control [3, 4], and robust control [5], among 

others [6]. However, the regulating time that draws the 

blood glucose concentration from a high level to the 

basal level is still too long for all these methods. In this 

paper, we propose a new data-driven feedback and 

feedforward integrated 2DOF (Two Degree-Of-

Freedom) control mechanism to shorten regulating time 

while maintaining the stability of the system in the 

presence of model uncertainties and unexpected 

disturbances. As shown in Fig. 2, the 2DOF control 

method contains two parts: (1) the feedforward control 

provides the nominal control to rapidly drive the system 

towards the desired goal; (2) the feedback control 

stabilizes the system. It has been proven that the 2DOF 

controller performs better than controllers that only use 

feedback under reasonable model uncertainty[7]. The 

2DOF control mechanism is said to be time-based if the 

reference trajectory is given by a time-driven planner. In 

contrast, a data-driven 2DOF control mechanism 
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utilizes a data-driven planner to generate the reference 

trajectory. 

 

 
 

Fig. 2 The schematic of data-driven 2DOF method. ΣFF 

is the feedforward controller, ΣFB is the feedback 
controller, and ΣPF is the coordinate transformation 
between the flat output reference zd and the output yd. 
The data-driven planner is driven by an action reference 
s generated by the output measurement, instead of 
driven by time. 
 

The data-driven 2DOF control uses exact 

feedforward linearization and gain scheduling methods, 

instead of exact feedback linearization, to improve 

robustness to model uncertainties, while has the same 

regulation performance. In addition, we use a data-

driven planning technique, which can further improve 

robustness towards model uncertainties and unexpected 

disturbances in comparison to the other 2DOF controls. 

While the data-driven planner aids in robustness, it is 

also advantageous compared to other planning 

approaches because it does not need to replan and 

regenerate the reference trajectory at every sampling 

time instant [8]. Since the action reference parameter is 

calculated nearly at the same rate as the feedback 

control, the planning process is adjusted rapidly, which 

enables the planner to handle unexpected disturbances 

within one control execution sampling time.  

This paper is organized as follows. Dynamics modeling 

of the microdevice is introduced in Secion II. The data-

driven 2DOF control mechanism is discussed in Section 

III-V. Computer simulation is conducted in Section VI. 

Conclusions and future work are discussed in the final 

section. 

 

2 Dynamics modeling 
 
2.1 The micropump 

The piezoelectric diaphragm displacement pump can 

be modeled as follows [9], 

  
4

13 0
2

3 (5 2 )(1 )
= ,

4 (3 2 )

a d V
Vol

h

 


 



         (1) 

where Vol  is the volume change and V0  is the 

voltage applied to the lead zirconate titanate film with 

piezoelectric coefficient d13 = 3×10-10 m/N and Poisson's 

ratio µ = 0.3. The thickness and the radius of the 

membrane are h and a, respectively.   

Papers [10] and [11], demonstrated that the flow rate 

increases linearly at low actuating frequencies. When 

the actuating frequency exceeds a critical value, though, 

the flow rate does not increase and may even decrease 

sharply. As a result of this electro-mechanical-fluid 

coupling, the membrane deflects in an undesirable way 

at high frequencies[12]. 

If a voltage signal with changing polarity drives the 

micropump, then the flow rate can be approximated as a 

linear function with respect to the voltage and the 

actuating frequency at low frequencies. 

 

0 0( , ) = 2 = ,pump dQ V f f Vol A fV           (2) 

where 4 2
13= 6 (5 2 )(1 ) /4 (3 2 )dA a d h      is a 

constant coefficient. 

If, for example, V0 = 1.5 V, a = 100 µm and h = 10 

µm then according to equation  (1), we will have ΔVol  

= 3.675×10-3 µl. Assuming that the micropump is driven 

at 100 Hz, equation (2) gives the pumping speed as 

0.735 µl/s. 

 

2.2 Microneedle 
Microneedles are attractive for medical applications 

in that they are able to provide painless drug transport 

pathways while at the same time largely reducing the 

risk of infection at injection site.  

The volume flow rate of a microneedle can be 

expressed as  

 
Qneedle = ΔP / R,                      (3) 

where ΔP is the pressure drop across the channel, and 

R  is the channel resistance for a circular channel, 

where 

 
R =8µL / πr4,                          (4) 

In equation (4), µ is the fluid viscosity, while L and r are 

the channel length and  radius, respectively. We choose 

a straight microneedle with 100/30  µm outside/inside 

diameter. 

Because the tatal resistance of a microneedle array is 

often smaller than the sum of the individual channel 
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resistances,  a high needle density increases the 

volume flow rate as follows,   

 
      Qneedle = ΔP / kdR,                      (5)  

where kd is the discount coefficient. 

The microneedle array is not sufficiently large to 

allow free flow, but it is large enough not to cause 

significant resistance. Ma et al. [13] showed that for 

microneedles, the flow rate is nearly linear to the 

actuating frequency at low frequencies. As a result, it is 

reasonable to assume that the microneedle array does 

not impede the flow from the micropump. 

 
2.3 Microsensor 

One of the major glucose sensors is the amperometric 

sensor, which determines the solution concentration by 

measuring the current generated during a chemical 

reaction. The amperometric sensor can be modeled as 

follows [14]:  

 

2 1= ,sig sigI c I c G OS                   (6) 

GS = CF(Isig – OS),                     (7) 

where GS  and G are the sensor and blood glucose level, 

respectively.,Isig is the sensor signal,. CF is the 

calibration factor and OS is the offset current. The 

sensor sensitivity is characterized by the ratio of c1 and 

c2, 

The sensor glucose model can be rewritten as 

  

2 1 2(1 )S SG c G c CF G CF c OS       

         1 2= ,SG G OF                   (8) 

where 1 2= c , 2 1= c CF , and 2= (1 )OF CF c OS . 

2.4 Glucose-insulin Kinetics 
Shimoda’s three-compartment model [15] can be 

used to describe the kinetics of either regular insulin or 

a monomeric insulin analog supplied as a continuous 

subcutaneous infusion. 

 

1 1=Q kQ u     (9) 

2 2 1= ( )Q p o Q kQ                    (10) 

2= ( ) /e b iI k I i pQ V                   (11) 

Here Q1 and Q2 stand for the insulin masses at the 

injection site and the intermediate site, respectively. I is 

the plasma insulin concentration with the basal value ib. 

u is the subcutaneous insulin infusion rate. k and p are 

the transition rate constants, and o and ke are 

degradation decay rates. The parameter Vi stands for the 

plasma distribution volume. 

The minimal model [16] has been widely accepted as 

the fundamental model to describe insulin-glucose 

interactions:  

 

1( )bG XG P G G GI                  (12) 

2 3 ( ),bX P X P I I                    (13) 

where G is the plasma glucose level (with basal value 

Gb), X is the interstitial insulin concentration, GI is the 

intravenous glucose uptake,  P1 is a coefficient for 

glucose effectiveness, and P3 / P2 is a measure of insulin 

sensitivity [16].  

Combining all subsystems and letting x1 = S – OF / θ1, 

x2 = G – Gb, x3 = X, x4 = I – Ib, x5 = Q2, x6 = Q1, and θ3 

= p / Vi, we have the following sixth-order nonlinear 

model. The meaning of the parameters are summarized 

in the Table I. 

 

1 1 1 2 2=x x x    

2 2 3 1 2= ( )bx x G x P x GI     

3 2 3 3 4=x P x P x   

4 3 5 4= ex x k x                                 

5 6 5= ( )x kx p o x   

6 6=x kx u   

1= ,y x                              (14) 

subject to 0 ( ) 10 / ( ) 75 / .u t U h and y t mg dL    

The input u=CV0 is a linear function of the applied 

voltage V0 according to the arguments presented in 

subsections A and B. In order to simplify the 

presentation, let us assume C = 1. 
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TABLE 1: Physical variables in the dynamic models 
 

Symbol Description 

x1(mg/dL) sensor measured plasma glucose level 

x2(mg/dL) plasma glucose level  

x3(min–1) interstitial insulin  

x4(mU/L) plasma insulin level  

x5(mU/Kg) insulin mass at intermediate site  

x6(mU/Kg) insulin mass at the injection site  

P1(min–1) glucose effectiveness  

P3/ P2(L/ mU) insulin sensitivity  

Vi(L/Kg) plasma distribution volume  

u(mU/Kg/min) insulin infusion rate  

Gb(mg/dL) basal plasma glucose level  

ib(mU/L) basal plasma insulin level  

OF calibration factor  

OS offset current  

c1 / c2 sensor sensitivity  

 

Consider a class of nonlinear systems 

 
( , )x f x u                           (15) 

y = h(x)                             (16) 

with state nx RÎ , input mu RÎ and output my RÎ . 

In equations (15)-(16), we assume that the vector field 

f(x,u) and the function h(x) are smooth.  

The glucose control problem is to regulate the blood 

glucose concentration from a high level to the basal 

level. Exact feedback linearization based nonlinear 

controls [17] can have good performance, however, 

these methods are sensitive to model uncertainties and 

disturbances, which is a big issue in glucose control 

problem. As a result, we will apply exact feedforward 

linearization technique based on differential flatness, 

which is more robust to the feedback linearization[18]. 

The feedforward linearization problem is to design a 

control ud to track a smooth reference trajectory 

connecting two stationary setpoints 0 0 0( , )d d du x y  and 

( , , )T T T
d d du x y  within a finite time interval [0,  ]t TÎ . 

The control and state variables satisfy the following 

relationships 

 
0 0 0 0 0 0( , ) : ( , ) = 0, = ( ),d d d d d du x f x u y h x        (17) 

( , ) : ( , ) = 0, = ( ).T T T T T T
d d d d d du x f x u y h x       (18) 

2.5 Differential flatness 
Definition [19, 20]: A system is said to be 

differentially flat if there exists a set of m differentially 

independent variables, 1[ ,...,  ]Tmz z z=  such that  

 
( )( , , , , ),z x u u u                      (19) 

( )( , , , ),x z z z    and                (20) 

( 1)( , , , ),u z z z                       (21) 

where , , and  are smooth functions of their 

arguments at least in an open subset of Rn+m(β+1), Rm(α+1), 

and Rm(α+2), respectively. A vector z which satisfies the 

above equations is called a flat output, and then the 

output vector can be written with respect to the flat 

output, 

 
( )( ) ( ( , ,..., )y h x h z z z    .            (22) 

All flat systems can be transformed into a normal 

form  

 

      

1 2

1

( )( , , , , ),   for 1, ,

i i

i

i

i i

i i
r r

i
k i u u u i m

 

 

  






 






   

  (23) 

via the Brunovsky state [21]:  

 

1 2

1 1 1 2 2
1 2 1 1( , , , , , , , , , , ) ,

m

m m T
r r r              (24) 

where 
1

m

ii
r n


 .  

By Delaleau and Rudolph [21], for the set of algebraic 

equations  
 

( )( , , , , )  i
i iu u u v                    (25) 

there always exists a solution 

( )( , , , , ) ,u v v v                     (26) 

where 1[ ,..., ]T
mv v v  and max( )i  . 

For example, consider a MIMO system 

 

1 2 1x x u                            (27) 

2 3 1 1x x x u                          (28) 
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3 2 2 .x x u                           (29) 

Set the Brunovsky state: 1 2 2( , , )x x x   . Then the 

MIMO system can be transformed into  

 
1 1
1 2 1u                            (30) 

2 1 1 2 1
2 2 2 1 1 2 1 2 .u u u u                    (31) 

As a result,  

 
1 1

1 1 2u                              (32) 

2 1 1 1 1 1 1
2 2 1 1 2 1 1 2( ) ( ).u                        (33) 

In fact, differential flatness is equivalent to dynamic 

feedback linearization on an open and dense set using a 

class of invertible dynamic feedbacks [20]. For SISO 

systems, a differentially flat system is equivalent to a 

static feedback linearizable system [22]. Fliess et al. 

[20] has proved that a flat system is controllable. 

 Hagenmeyer and Delaleau [18] showed that if the 

desired trajectory is in close proximity to the initial 

condition x0, i.e., 

 

      ( )
0 ( , , , ) ,d d dx z z z                 (34) 

then after applying the exact feedforward linearization 

control 

 
( )( , , , , ),d d d du v v v                   (35) 

the MIMO nonlinear system (23) is equivalent to the 

Brunovsky normal form (Proposition 1, [18]). 

 

1i i

i i

j j
r r

j j
r dr

 

 
 



 

                             (36) 

2.6 Two degree-of-freedom Control 
As shown in Fig. 2, the 2DOF controllers contain two 

components: feedforward control providing nominal 

input, and feedback control ensuring stability. The 

addition of feedforward controllers can improve the 

tracking performance when compared with the use of 

feedback controllers alone under acceptable model 

uncertainties, and thereby, significantly shorten the 

regulating time. However, model-based feedforward 

controllers alone cannot resist large model 

uncertainties[23], feedback controllers have been 

employed in conjunction with feedforward to reduce 

uncertainty-caused errors, such as sliding mode control 

[24], backstepping control[25], and PID control [18]. In 

this paper, we propose a 2DOF controller described as 

follows:  

 
( )( , , , , ) + ( )( ),d d d d du v v v K         (37) 

where K(ξ) is a scheduled gain. The gain scheduling 

control is designed to compensate unknown model 

uncertainties and avoid singularity problem, which often 

occur when using linearization techniques [26, 27]. 

Several gain scheduling methods[8] can be chosen 

dependent on the system requirements. These include 

hard switching, linear interpolation, and switching with 

hysteresis.  

The 2DOF method improves the robustness of the 

conventional  feedback linearization[17], which is very 

sensitive to model uncertainties. The feedback 

linearization technique exactly cancels nonlinearities via 

state feedback, while the 2DOF control method uses 

exact feedforward linearization (35), which is known to 

be more robust than feedback linearization in terms of 

model uncertainties[18].  

In the next section, a data-driven planning technique 

will be presented to further improve robustness towards 

both model uncertainties and unexpected disturbances. 

 
3 Data-driven Planner 
 

The 2DOF control can have better tracking 

performance than the use of feedback control alone in 

the presence of acceptable model uncertainties.[7] In 

reality, model uncertainties and unexpected disturbances 

can be large and result in substantial deviation of the 

output trajectory from the predefined planning trajectory. 

The time-driven 2DOF control often deteriorates this 

deviation, since the time-driven planner cannot stop, but 

instead continues to gives offline-computed values as 

time evolves. This fact will lead to poor performance, 

and even instability.  The data-driven planner, however, 

refers to the current output and the planning trajectories 

‘stop’ and ‘wait’ the system recovered from the 

disturbances. As a result, the data-driven 2DOF 

controller will not deteriorate the substantial deviation 

created by the model uncertainties or disturbances.  

As shown in equation (17)-(18), we need plan a 

sufficiently smooth reference trajectory connecting an 
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initial setpoint and a terminal setpoint in the time 

interval T, and then use this trajectory to develop a exact 

feedforward linearization control (35). The sufficiently 

smooth reference trajectory (Fig. 3 the dotted curve) can 

be constructed using a polynomial series [28] as follows, 

 

 2 1

0 0 = 1
( ) = ( ) / , [0, ],

r j

d T jj r
y t y y y a t T t T




  

  
(38) 

where r is the relative degree [17] of the nonlinear 

system (15)-(16), and  
 

( 1)( 1) (2 1)!
= , = 1, , 2 1.

!( ( 1))!(2 1 )!

j r

j

r
a j r r

j r j r r j

  
 

    


(39) 

Alternatively, we can use an exponential function (Fig. 

3 the solid curve),  

 
/

0= ( )( / 1) ,t b
T Ty y y t b e y             (40) 

where b = T / 10. 

 

 

Fig. 3 Polynomial planner (dotted) v.s. Exponential 

planner (solid). In this illustratrion, we choose T = 100, 

y0 = 10 and yT = 0. 

 

These reference trajectories yd(t) are sufficiently 

smooth, yet steep. As shown in Fig. 4(a), if an 

unexpected disturbance is applied over a short time 

period t , the output error y(t) - yd(t) grows sharply, as 

does the state error e = x – xd. According to [18] and 

equation (34), the feedforward control ud will fail to 

translate the nonlinear system into a normal form. This 

problem occurs because the time-driven planning 

trajectory refers to the reference trajectory at time 

instant t, i.e., yd(t). As a result, the time-driven 

feedforward control can have poor tracking 

performance, which may even lead to instability.   

The data-driven planner [29, 30] is a closed-loop 

planner (Fig. 2) driven by an action reference, s, which 

is a non-time scalar factor generated by measurement 

data. As shown in Fig. 4(b), a simplified data-driven 

reference trajectory refers to the reference trajectory in 

the output level, i.e., yd(y). The output error is zero and 

the corresponding state error is much smaller than the 

state error generated when using time-driven planning. 

As a result, the feedforward controller can guarantee 

good tracking performance.  Theorem 1 gives a 

sufficient condition for stability of the data-driven 

control approach. Very generally, this theorem implies 

that the stability of data-driven control is at least the 

same as the stability of the time-driven control.  

Moreover, in contrast to other planning approaches 

[8], the data-driven planner need not replan and 

regenerate a reference trajectory at every sampling time 

instant. In fact, the action reference parameter is 

calculated nearly at the same rate as the feedback 

control, meaning that the planning process is adjusted 

rapidly, enabling the planner to handle unexpected 

disturbances within one control execution sampling 

time.  

Theorem 1 [30]: If the nonlinear system (15)-(16) is 

asymptotically stable with a time-driven controller u(t), 

and the event s is monotonically increasing (or non-

decreasing) with time t, i.e., 

  
/ 0 (or / 0),ds dt ds dt               (41) 

Then this system is asymptotically stable (or stable) 

under the data-driven controller ( )u s . 

 

 

Fig. 4 Time-driven versus data-driven planning 

trajectory. A time-driven planning trajectory refers to the 

time instant t, while a data-driven planning trajectory 

refers to the output level y.  

 

The data-driven planner develops a relationship 

between the output y and its derivatives , ,...,y y  and 
( )ry . The exponential reference trajectory is easier to 

analyze than the polynomial trajectory, although yT  can 

only be approximately reached in time T. Given the 

output y, the time t can be calculated from equation 
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(40) directly.  

 
      / 1 = ,t b W                          (42)  

where 0( 1, ( ) /( ) )T TW W y y y y e     is the -1 branch 

of the Lambert W function, which is the solution of the 

function 0( ) /( ) = W
T Ty y y y e We  . From these 

equations, the first order derivative ( )y t  is 

  
      1

0( ) = ( )( 1) / .W
Ty t y y W e b            (43)  

If the output monotonically decreases with t, the event S 

is defined as  

 
      S = y0 – y; S0  = 0,                    (44)  

Thus, the derivatives of y can be written as functions of 

S,  
 

( ) 1
0( ) = ( )( ( ) 1) / ,W S

Ty S y y W S e b  (45)

( ) ( 2) ( 1) 2( ) = ( ( ) 2 ( )) / , > 2,i i iy S y S by S b i   (46) 

2( ) = [ ( ) 2 ( )] / ,Ty S y S y by S b            (47)  

where 0( ) ( 1,[ ( )] /( ) )T TW S W y y S y y e    . 

   Keeping in mind that the output y(t) may suddenly 

increase because of a short unexpected disturbance, we 

examine the effect of this disturbance on the event S. In 

order to keep the monototically nonincreasing condition 

required for Theorem 1, as shown in Fig. 5, the event S 

first increases as y decreases, but then stops evolving 

after y reaches a valley yc. S resumes evolution again 

only after y returns to the level of yc. 

 

 

Fig. 5 The event S stops growing until y is recovered 

from the disturbance. 

 

 

4 Control Application 
 

In this section, we will constuct flatness-based 

feedforward control for the insulin delivery system (14). 

The output is 1=z x , so the states can be described as 

functions of z, …, z(n) 

 

    1 = ,x z  

    2 = ( )/ ,x z z   

    3 2 1 2 2= ( ( ))/ ,bx x P x G x    

      4 3 2 3 3 3= ( )/ ,bx x P x P i P   

      5 4 4= ( ( )) / ,e b ix x k x i V p   

      6 5 5= ( ( ) )/ .x x p o x k   

In this case, the input also is a function of ( 1), , , nz z z   , 

since 

 

      6 6=u x kx                           (48) 

 

Hence, the system (14) is differentially flat. 

The 2DOF controller can be written as 

 

      = ( ) ( ) ( ),du K z PD e                 (49) 

 

where ( )K z  is a hard-switching scheduled gain, and 

the state ( 1)= [ , ,..., ]n
d d d dz z z   . The PD controller is 

 

      ( ) ( ) ( )p d d dPD e K z z K z z     .        (50) 

The feedforward control ud = Θ(ξd) can be computed as 

 

2 1 2

21

31 22 1 21

32 23 1 31 22

33 24 1 31 23 32 22

34 25 1 31 24 32 23 33 22

35 26 1 31 25 32 24 33 23 34 22

4 3 2 3

= ( )/ ,

= 1/( ),

= [ ] ,

= [ ( ) ] ,

= [ ( ) 2 ] ,

= [ ( ) 3 3 ] ,

= [ ( ) 4 6 4 ] ,

= (

d d

b

x

D x G

x x P x D

x x P x x D

x x P x x x x D

x x P x x x x x x D

x x P x x x x x x x x D

x x P x

   

 



 
  

   

    






3

5 4 4 3

6 5 5

62 61

)/ ,

= ( )/ ,

= ( ( ) )/ ,

( ) = .

e

d

P

x x k x

x x p o x k

x kx







 
 




       (51) 
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5 Simulation Results 
 

 To demonstrate the effectiveness and robustness of 

the data-driven 2DOF control algorithm, we test 

different cases by computer simulation using Matlab 

and Simulink. The system parameters are set as Table II.  
 

Table 2: System Parameters Used In The Simulation 

Parameters Value  Parameters Value 

P1 0.003082 ke 0.267 

P2 0.02093  θ1 0.33 

P3 0.00001282 θ2 0.33 

Gb 85 ib 0 

o 0.0125 P 0.25 

k 0.25 Vi 0.21 

 
5.1 Test of robustness 

First of all,  the robustness of the data-driven 2DOF 

control method is tested by a couple of cases. 
 

Case 1: Various initial glucose input 

Initial glucose inputs range from 5 to 40 mg/min at 6 

- 11 min and the BGL(blood glucose level) is sampled 

every 5 min. When the data-driven 2DOF control is 

applied, the BGL converges to the basal level in 80 - 

130 min, and remains above the minimal level. The 

magnitude of the insulin infusion rate grows as the 

initial glucose input increases. The maximum insulin 

infusion reaches 7 U/h, which is under the constraints.  

  

 

Fig. 6 The data-driven 2DOF control approach is tested 

by various initial glucose input, the BGL converges to 

the basal level in 80 - 130 min, and remains above the 

minimal level. 

 

Case 2: Various sampling interval 

Two glucose inputs 40 and 3 mg/min are administered 

at 6 - 11 min and 17 - 26 min, respectively. The BGL is 

sampled from 5 to 20 min. The BGL converges to the 

basal level in 130 - 160 min. Clearly, the proposed 

method can control blood glucose levels even for a 20 

min sampling interval, which would cause poor 

performance in most feedback-based controllers. The 

feedforward linearization technique in the 2DOF control 

largely reduces the dependence of the real-time 

feedback, leading to the sampling robustness observed 

in our simulations.  

 

 

Fig.  7  The BGL is sampled from 5 min to 20 min. 

The BGL converges to the basal level in between 130 

min and 160 min. 

 

Case 3: model uncertainties 

Two glucose inputs 40 and 3 mg/min are 

administered at 6 - 11 min and 17 - 26 min, respectively. 

The BGL is sampled every 5 min. The system (14) with 

model uncertainties can be written as  

 

    ( , ) ( ,0)x f x u f x  ,                 (52) 

 

where ( ,0)f x  implies that model uncertainties are  

proportional to vector field f(x,0), and  >0 is a 

constant coefficient. For  values of 0.5, 1, and 1.5, the 

BGL still converges under the same controller 

parameters. The larger model uncertainty leads to a 

longer convergence time; however, one can always 

adjust the gains of the PD controller (50) to achieve 

desired performance.  
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Fig.  8  The BGL converges to the basal level subject 

to model uncertainties. The model uncertainties are 

assumed to be 0.5 (solid), 1(dashed) and 1.5(dotted) 

times of the proposed model.  

 
5.2 Comparing to other control algorithms 
1) Time-driven approach 

With a 10 mg/min initial glucose, a disturbance of 1 

mg/min glucose is applied over the time period from 36 

- 47 min. The data-driven approach converges to the 

basal level at 130 min, while the time-driven approach 

requires 200 min - a significant, and biologically costly 

delay relative to the  data-driven approach. 

 

 

Fig.  9 In the event of disturbance, the time-driven 

control converges to the basal level at 200 min, while 

the data-driven control converges at 130 min. 

 

2) MPC approach 

The MPC (Model Predictive Control)[3, 31] is the 

most extensively applied control mechanism in 

industrial processing besides PID control. The Linear 

MPC approach first applies local Jacobian linearization, 

then uses a finite-horizon optimal control as follows, 

 

 =1

=1

( ( | ) ( )) ( ( | ) ( ))

( 1) ( 1)

p
T

i

m
T

i

y k i k r k i Q y k i k r k i

u k i Ru k i

     

    




(86) 

Two glucose inputs 40 and 3 mg/min are administered at 

6 - 11 min and 17 - 26 min, respectively. Using the MPC 

approach with a 5 min sampling interval, the BGL 

converges to the basal level at 170 min, while the data-

driven 2DOF control stabilizes the BGL at 140 min.  
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Fig.  10 BGL converges to the basal level at 170 min 

by MPC appraoch, while BGL converges at 130 min by 

the data-driven 2DOF control approach. 

 

3) PD control 

Two glucose inputs 20 and 3 mg/min are administered 

at 6 - 11 min and 17 - 26 min, respectively. Using the 

classical PD approach with a  5 min sampling interval, 

the BGL converges to the basal level at 160 min. When 

the first initial glucose input changes to 40 mg/min, 

however, the BGL significantly undershoots the 

minimal allowable glucose level, which may be 

dangerous to the patient. For both 20 mg/min and 40 

mg/min, though, the data-driven 2DOF control approach 

makes the BGL converge at 140 min while at the same 

time remaining will within the safety range. 

 

 

Fig.  11 Using the data-driven 2DOF control approach, 

the BGL converges at 140 min and above the minimal 

level in both cases, while the BGL goes underneath the 

minimal level using the classical PD control approach.  
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4) Backstepping control with Extended Kalman Filter 

Yang et al. [6] proposed a backstepping control 

algorithm for the glucose control problem. Two glucose 

inputs 20 and 3 mg/min are administered at 6 - 11 min 

and 17 - 26 min, respectively. When we apply the 

classical backstepping control approach with a 5 min 

sampling interval and given full state information, we 

find that the BGL converges to the basal level at 150 

min, which is comparable with our proposed approach. 

However, when EKF (Extended Kalman Filter) [32] is 

applied to estimate the states, the BGL goes underneath 

the minimal allowable level.  
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Fig. 12 Using the backstepping control approach with 

full states information, the BGL converges to the basal 

level at 150 min, similar to the data-driven approach. 

However, when EKF is used to estimate the states, the 

BGL goes underneath the minimal level.  

 
6 Conclusions 
 

A new data-driven 2DOF control mechanism for 

controlling a micropump and microneedle integrated 

device is presented in this paper. Compared with several 

feedback techniques in literature, this approach 

demonstrates much shorter regulating time for glucose 

control. In addition, this method also resists more model 

uncertainties and unexpected disturbances than other 

2DOF controls, while has the same regulaton 

performance. This work focuses on theorectial 

breakthrough and validation by computer simulation. 

Labortary experiments will be implemented in future 

work.  
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