
DP method for Structural Change Detection as Optimal Stopping  
--- Verification and Extension ---- 

 
 *Tetsuo Hattori, *Katsunori Takeda, **Hiromichi Kawano, *** Tetsuya Izumi   

 

*Graduate School of Engineering, Kagawa University / 2217-20 Hayashi, Takamatsu City, Kagawa 761-0396, Japan  
** NTT Advanced Technology / Musashino-shi Nakamachi 19-18, Tokyo 180-0006, Japan 

*** Micro TechnicaCo., Ltd./ Yamagami BLD. 3-12-2 Higashi-ikebukuro, Toshima-ku, Tokyo 170-0013, Japan   
 (Tel : 81087-864-2221; Fax : 81-087-864-2262) 

(hattori@eng.kagawa-u.ac.jp) 
 

Abstract:  Previously, we have formulated the structural change detection method in time series as an Optimal 
Stopping Problem with an action cost, using the concept of DP (Dynamic Programming). Then we have proved a 
theorem that the solution satisfies an inequality. In this paper, we verify the solution by numerical computation and 
gives the extension of the method by clarifying the notions of estimated structural change point and detection time 
point that the structure has changed so far. 
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I. INTRODUCTION 

  For ongoing time series analysis, three stages are 
considered: prediction model construction, structural 
change detection (and/or disparity detection between the 
model and observing data), and renewal of prediction 
model. Especially in the second stage, it is important to 
detect the change point as quickly and also correctly as 
possible, in order to renew the accurate prediction 
model as soon as possible after the detection.  

As the structural change detection, or change point 
detection (CPD), some methods have been proposed 
[1]-[4]. The standard well known method is Chow Test 
that is used in econometrics [2]. It does a statistical test 
by setting the hypothesis that the change has occurred at 
time t for all of data obtained so far. 

Previously, we have formulated the structural 
change detection method in time series as an Optimal 
Stopping Problem with an action cost, using the concept 
of DP (Dynamic Programming) [5],[6]. Moreover, we 
have shown a theorem [6]. This paper presents the 
verification of the theorem and shows the extension.  

 

II. OPTIMAL STOPPING DP METHOD  

1. Formulation ([5],[6]) 
According to the previously presented description 

([5],[6]), we formulate the DP method for the change 
point detection problem (CPD), using an evaluation 
function that sums up the cost involved by prediction 
error and action cost to be taken after the change 
detection. 

For example, a prediction expression is given in the 
following equation as a function of time t, where yt, 1β , 

0β , ε  mean the function value, two constant 
coefficients, and error term, respectively.  

εββ ++⋅= 01 tyt                        (1) 
The error term ε  is given as a random variable of 

the normal distribution of variance and average of 0, 
i.e., 

2σ
ε ~N(0, ). For a time series data based on the 

equation (1), we think of two situations: one is the 
situation that the observed data goes out from the 
tolerance zone that means missing the range of 

2σ

σ2± from the predicted value. And, another is the 
situation that the observed data goes in the zone. We call 
the former situation “failing” (or “Out”) and the latter 
“hitting” (or “In”). We assume that the structure changes 
when the failing occurs for continuing N times. 

The evaluation function is given by (2) as the sum of 
two kinds of cost: the damage caused by the failing (i.e., 
failing loss) and action cost to be taken after the change 
detection. 

Total_cost=cost(A)+cost(n)                (2) 
where cost(n) is the sum of the loss by continuing n 

times failing before the structural change detection, and 
cost(A) denotes the cost involved by the action after the 
change detection. Then we have to find the number of N 
that minimizes the expectation value of Total_cost, 
assuming that the structural change occurs randomly. 

2. Structural change model ([5],[6]) 
We can assume that the structural change is Poisson 

occurrence of average λ, and that, once the change has 
occurred during the observing period, the structure does 
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not go back to the previous one. The reason why we set 
such a model is that we focus on the detection of the 
first structural change in the sequential processing (or 
sequential test). The concept of the structural change 
model is shown in Fig. 1.  

 
 
 
 
 
 
 
 
 
 

Fig.1. Structural change model. 
 
Moreover, we introduce a more detailed model. Let 

R be the probability of the failing when the structure is 
unchanged. Let Rc be the probability of the failing when 
the structure change occurred. We consider that Rc is 
greater than R, i.e., Rc>R. The detailed model for the 
State Ec and E are illustrated as similar probabilistic 
finite state automatons in Fig.2 and Fig.3, respectively. 

 
 
 
 
 
 
 
 

Fig.2. Internal model of the State E. 
 
 
 
 
 
 
 
 

Fig.3. Internal model of the State Ec. 
 

3. Definition ([5],[6]) 
Let the cost(n) be as a linear function for n, 

where is the loss caused by the failing in one time. 
And for simplicity, let T and A denote the Total_cost and 

cost (A), respectively. Then, the evaluation function in 
(2) is denoted as the following equation (3). 

na ⋅
a

 
       naAT ⋅+=                           (3) 

We recursively define a function  to obtain 
the optimum number of times n that minimizes the 
expectation value of the evaluation function of Equation 
(3), using the concept of DP (Dynamic Programming). 
Let N be the optimum number. Let the function 

 be the expectation value of the evaluation 
function at the time when the failing has occurred in 
continuing n times, where n is less than or equal to N, 
i.e., 

),( NnET

),( NnEC

Nn≤≤0 . 

λ 
1.01-λ 

Ec  

Thus the function is recursively defined as follows. 
 

(if n = N ) NaANnET ・+=),(              (4) 

 (if n < N ) naSSPNnET n
n ・・)|(),( 1+=  

),())|(( NnETSSP n
n 11 1 +−+ +      (5) 

 
where Sn means the state of failing in continuing n times, 

1+nS  the state of hitting at the (n+1) th observed data, 
and )|( n

n SSP 1+  means the conditional probability 
that the state 1+nS  occurs after the state Sn. 

The first term in the right-hand side (RHS) of the 
equation (4) indicates the expectation value of the 
evaluation function at the time when hitting happens at 
the (n+1)th data after the continuing n times failing. The 
second term in the RHS of the equation (5) indicates the 
expectation value of the evaluation function for the time 
when failing happens at the (n+1)th data after 
continuing n times failing. 

Then, from the definition of the function , 
the goal is to find the N that minimizes , 
because the N is the same as n that minimizes the 
expectation value of the evaluation function of (4).   

),( NnET
),( NET 0

4. Minimization of the evaluation function 
The analytical solution N that minimizes 

can be deduced. The strict proof needs many 
pages, then we show numerical solution. 

),( NEC 0

The function  is defined by recursive 
expressions (4) and (5), then  can be 
computed by recursively. In the process of this 
computation, 

),( NET 0
),( NET 0

)|( n
n SSP 1+  can be calculated as follows. 

Let be the event that the structural change 
occurs once during the period of observation in 
continuing n times. Let  be the conditional 

probability that the happens under the condition 

cnE

)|( n
cn SEP

cnE

out in 

1-Rc  

1-Rc

Rc 

Rc

Ec 

E 

 Ec : State that the structural change occurred. 
 E : State that the structure is unchanged. 
λ: Probability of the structural change occurrence. 
       (Poisson Process.) 

 

out in  

1-R R  

R 

E 

1-R 

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11), 
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 196



that failing has already occurred for continuing n times. 
Based on the model in Fig.1-3,  

 
)|()())|()(()|( n

cnc
n

cn
n

n SEPRSEPRSSP −+−−=+ 1111  
            (6) 

Subsequently, we show the Lemma 1 and Lemma 2. 
Lemma 1: Let be the event that the structural 

change occurs once during the period of observation in 
continuing n times. Let  be the 
conditional probability that the  happens under 
the condition that failing (“Out”) occurs in continuing n 
times. is an increase function for n.  

cnE

)|( n
cn SEP
cnE

)|( n
cn SEP

 
Proof: Let E be the event that there is no structural 

change. According to the Bayes’ theorem, we have 
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where  
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The D(n) is also expressed as follows.   
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where 
cR

R)(1X  λ－= . 

Since , 10 <λ≤ 110 ≤λ−< , and , then 
0<X<1. So, the D(n) becomes a monotonous decrease 
for n. Therefore, the probability  is a 
monotonous increase function. This means that, if the 
number of the failing times n increases, the probability 
that the structural change has occurred increases. This 
meets our intuition clearly. 

RRc >

)|( n
cn SEP

Lemma 2: The conditional probability )|( n
n SSP 1+ is a 

decrease function for n.  

Proof: Notice the equation (6). 
)|()())|()(()|( n

cnc
n

cn
n

n SEPRSEPRSSP −+−−=+ 1111
  The first term in the RHS of (6) shows the probability 
that the hitting (“In”) occurs for the (n+1)-th time 
observed data when the structure is unchanged. The 
second term shows the probability that the hitting 
occurs for the (n+1)-th time observed data when the 
structure changed.  

From the equation (6), we have 

))(|()|( c
n

cn
n

n RRSEPRSSP −+−=+ 11    (9) 
 
By the aforementioned Lemma 1,  is 

an increase function, and , therefore, 
)|( n

cn SEP
cRR <

)|( n
n SSP 1+ is a decrease function for n.  

Remark: Lemma 2 indicates that, if the number of 
times of continuous failing increases, the probability of 
the fitting for the next observed data after those 
continuous failing decreases. This is intuitively clear, 
because, by Lemma 1, the probability of the structural 
change increases if the number of times of the 
continuous failing increases. ∑
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By using the above Lemma 1 and 2, and the 
reduction to absurdity, the following theorem holds [6], 
that gives the n that minimizes the expectation value 
ET(0,N).  

Theorem [6].   
The N that minimizes ET(0,N) is given as the largest 

number  n that satisfies the following Inequality (10). 
)|()( 1−+< n

n SSPaAa ・                 (10) 
where the number N+1 can also be the optimum one 

that minimizes ET(0,N), i.e., ET(0,N) = ET(0,N+1), 
only if 

 
 

III. VERIFICATION AND EXTENSION 

1. Verification of the Theorem by numerical 
computation

By numerical computation, we evaluate the ET(0,N) 
and the Inequality(10) under the same conditions. Fig.4 
(a) shows that the relation between the expectation 
ET(0,N) and N, and Fig.4(b) shows the value 

)|()( N
N SSPaAa 1++− ・ . We can easily verify that the 

number 3 minimize ET(0,N), and at the same time, is 
the largest number satisfying Inequality (10). Fig.5 also 
shows that the relation between the expectation ET(0,N) 
and N by varying the A/a and fixed λ. It implies that as 

=

)|()( N
N SSPaAa 1++= ・
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the action cost A is greater, the N that minimizes 
ET(0,N) becomes greater. 

ET (0,N)  

2. Extension of the change point notion 
λ=0.001 Rc=0.95, R=0.05 
●: A/a=18, ○: A/a=15,  
▲: A/a=10, △: A/a=3  

We separate the notion of CPD into two that one is 
the time point when the change has been detected so far 
at the observing time and another is the estimated 
change point just the time when the change has occurred.  

Then we define that, if the aforementioned detected 
change point is tc, then estimated change point exits 
within a section [tc-N, tc]. We have also verified by 
experimentation for ongoing real time series data, that 
the extended definition works very well. 

 

IV. CONCLUSION 

  We have verified and shown by numerical 
computation, that the Theorem surely holds. And we 
also have proposed the extended notion of change point 
detection. We consider that the optimal stopping DP 
method and the extension will be promising. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Fig.4. Evaluation of the expectation ET(0,N)   and

 Inequality  )|()( 1−+< n
n SSPaAa ・  appeared in the

 Theorem [6]. 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

Fig.5. Relation between the expectation ET(0,N) and N 
with Rc and λ fixed and varying A/a(18, 15, 10, 3). 
Optimal N is 4,3,3,2, respectively, depending the order 
of the above ratio of A/a.  
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