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Abstract

M.Blum and C.Hewitt first proposed two-dimensional
automata as a computational model of two-dimensional
pattern processing, and investigated their pattern recogni-
tion abilities in 1967. Since then, a lot of researchers in
this field have been investigating many properties about au-
tomata on a two- or three-dimensional tape. On the other
hand, the question of whether processing four-dimensional
digital patterns is much more difficult than two- or three-
dimensional ones is of great interest from the theoreti-
cal and practical standpoints. Thus, the study of four-
dimensional automata as a computasional model of four-
dimensional pattern processing has been meaningful. This
paper introduces a cooperating system of four-dimensional
finite automata as one model of four-dimensional au-
tomata. A cooperating system of four-dimensional finite
automata consists of a finite number of four-dimensional
finite automata and a four-dimensional input tape where
these finite automata work independently (in parallel).
Those finite automata whose input heads scan the same cell
of the input tape can communicate with each other, that
is, every finite automaton is allowed to know the internal
states of other finite automata on the same cell itis scanning
at the moment. In this paper, we mainly investigate several
accepting powers of a cooperating system of seven-way
four-dimensional finite automata. The seven-way four-
dimensional finite automaton is a four-dimensional finite
automaton whose input head can move east, west, south,
north, up, down, or in the future ,but not in the past on a
four-dimensional input tape.

Key Words: computational complexity, cooperating sys-
tem, finite automaton, four-dimension, multihead.

1 Introduction

A cooperating system of four-dimensional finite au-
tomata (CS-4-FA) [2-4,8] consists of a finite number of
four-dimensional finite automata and a four-dimensional
input tape where these finite automata work independently
(in parallel). Those finite automata whose input heads scan
the same cell of the input tape can communicate with each
other, that is, every finite automaton is allowed to know the
internal states of other finite automata on the same cell itis
scanning at the moment.

In this paper, we propose a cooperating system of seven-
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way four-dimensional finite automata (CS-SV4-FA) which

is a restricted version of CS-4-FAs, and mainly investi-
gate its several properties as four-dimensional language ac-
ceptors. The seven-way four-dimensional finite automa-
ton [7] is a four-dimensional finite automaton [1] whose
input head can move east, west, south, north, up, down,
or in the future, but not in the past. The paper has six
sections in addition to this Introduction. Section 2 con-
tains some definitions and notions. Section 3 investigates
a relationship between seven-way four-dimensional sim-
ple multihead finite automata (SV4-SPMHFA'S) and CS-
SV4-FAs. It is shown that SV4-SPMHFAs and CS-SV4-
FAs are equivalent in accepting power if each sidelength
of each four-dimensional input tape of these automata is
equivalent. Section 4 investigates the difference between
the accepting powers of CS-SV4-FAs and CS-4-FA's, and
shows that CS-SV4-FA's are less powerful than CS-4-FA’s.
Section 5 investigates the difference between the accept-
ing powers of deterministic and nondeterministic CS-SV4-
FAs, and shows that deterministic CS-SV4-FAs are less
powerful than nondeterministic CS-SV4-FAs. Section 6
concludes by giving some open problems. In this paper,
we let each sidelength of each input tape of these automata
be equivalent in order to increase the theoretical interest.

2 Preliminaries

Definition 2.1. Let > be a finite set of symbols. four-
dimensional tapever is a four-dimensional rectangular
array of elements o . The set of all four-dimensional
tapes oveb . is denoted byp" V). Given atape: € 3 4,
for each integey(1 < j < 4), we letl;(x) be the length
of z along thejth axis. The set of all: € ¥ with
ll(l‘) = N1, lg(.ﬁ) = No, l3(3§‘) = ns, andl4(x) = N4 is
denoted byy("+">"314) When1 < i; < I,(z) for each
J(1 < j < 4), letx(iy,is,i3,i4) denote the symbol in
with coordinatesi, , i», i3, 14 ). Furthermore, we define

w[(i17i27i37i4)7(illai/Qaig7i£1)L
whenl < i; <% < 1;(z) for each integef(1 < j < 4),

as the four-dimensional input tapesatisfying the follwing
conditions:

(i) for eachj(1 < j < 4),L;(y) = #} — i; + 1;
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(ll) for eaChT17’l"2,’l"3,T’4(1 S 1 S ll(y), 1 S 9 S lg(y),
1 <713 <I3(y),1 <ra <lu(y)),y(ri,r2,73,74)
:1’(T1+i1—1,’]"2+’L'2—1,7'3+Z.3—].,?”44—1'4—1).
(We call .’L'[(Z'17i2,i3,i4),(ill,ilz,ié,iil)] the
[(31,92,13,14), (3}, 15, 15,1, )]-segmendf z.)

We recall aseven-way four-dimensional simple k-head
finite automator{SV4-SH:-HFA)[5,6]. An SV4-SPkHFA
M is a finite automaton wittk read-only input heads op-
erating on a four-dimensional input tape surrounded by
boundary symbolgs. The only one head(called the ‘read-
ing’ head) of M is capable of distinguishing the symbols
in the input alphabet, and the other heads(catiednting’
heads) of\/ can only detect whether they are on the bound-
ary symbols or a symbol in the input alphabet. When an in-
put taper is a presented tdé/, M determines the next state
of the finite control, the next move direction (east, west,
south, north, up, down, future, past or no move) of each
input head, depending on the present state of the finite con-
torol, the symbol read by the reading head, and on whether
or not the symbol read by each counting head is bound-
ary symbol. We say that/ acceptse if M, when started
in its initial state with all its input heads an(1,1,1,1),
eventually halts in an accepting state with all its heads on
the bottom boundary symbols af As usual, we define
nondeterministic and dterministic SV4-BPIFA's.

A seven-way four-dimensional sensing simple k-head fi-
nite automato(SV4-SNSPKHFA) is the same device as
a SV4-SR-HFA except that the former can detect coinci-
dence of the input heads.

We denote a deterministic(nondeterministic) SV4-SPk
HFA by SV4-SPEHDFA(SV4-SR:-HNFA), and denote
a deterministic (nondeterministic)SV4-SNSPEA by
SV4-SNSPAHDFA(SV4-SNSR-HNFA).

We now give formal definition of @ooperating system
of k four-dimensional deterministic finite autom#€@s-4-
DFA(k)) as an acceptor.

Definition 2.2. A CS-4-DFA(k) is ak-tuple M = (FA4,
FA;, ..., FA.), k > 1, such that for each < i < &,

FAi = (Z? Qi7 Xi7 5i7 (JOi7 F’i7 ¢7 ﬁ)’
where
1. 3 is afinite set ofnput symbols.

2. Q; is a finite set obtates

3. X = (Q1U{g}) x - x (Qi—1 U{o}) x (Qit1 U
{¢}) x -+ x (Qr U{¢}), where ‘¢’ is a special state

notin(Q; U@z U---UQy).

4.9, : (Z U{ﬁ}) X X; XQZ' — Qixeast(: (0;’-1, 0,0))
,west(= (0,—1,0,0)),south(= (+10,0,0)),north
(=(-1,0,0,0)),up(= (0,0,—1,0)),down= (0,0,
+1,0)),future(= (0,0,0,+1),past(= (00,0, —1
)),no moveé= (0,0,0,0))is the next move functian
where ‘4’ is theboundary symbatot in .
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5. ¢0; € Q; is theinitial state of FA;.

6. F; C Q; is the set oficcepting statesf FA;.

Every automaton ofM independently (in parallel)
works step by step on the same four-dimensional tape
over Y surrounded by boundary symbafs. Each step
is assumed to require exactly one time for its completion.
For eachi(l < i < k), let g; be the state of FAat time
‘t'. Then each FA, enters the next state;at time ‘t + 1’
according to the function

0i(x(, B,7, )y (@l oy Gy Gigrs -+ )5 €)=
(pi, (d1,d2,d3,dy)),

wherex(a, 3,7, p) is the symbol read by the input head of
FA; attime ‘t’and foreach € {1,...,i—1,i+1,...,k},

g; € Q; ifthe input heads of FAand FA;,
;L are on the same input position at
%= the moment#’;
10) otherwise,

and moves 1stinput headt0a+d,, B+ds, v+ds, p+ds)
attime ‘t+ 1'. We assume that the input head of FAever
falls off the tape beyond boundary symbols.

When an input tape € 2(4) is presented td/, we say
that M acceptshe taper if each automaton ol/, when
started in its initial state with its input head ofil, 1,1, 1),
eventually enters an accepting state with its input head on
one of the bottom boundary symbols.

We next introduce aooperating system of k seven-way
four-dimensional deteministic finite automat@S-SVv4-
DFA(k)), with which we are mainly concerned in this pa-
per.

Definition 2.3. A CS-SV4-DFA{) is a CS-4-DFAE) M

= (FA1, FA,,..., FA,) such that the input head of each,FA
can only move east, west, south, north, up, down, or in the
future, but not in the past.

To give the formal definition of acooperating
system of k four-dimensional nondeterministic finite
automata (CS-4-NFA)) and a cooperating system of
k seven-way four-dimensional nondeterministic finite
automata(CS-SV4-NFAE)) is left to the reader. For
each X € {SV4-SPkHDFA,SV4-SR:-HNFA,SV4-
SNSPkHDFA,SV4-SNSPHHNFA,CS-4-DFAE),CS-4-
NFA(k),CS-SV4-DFA(R,CS-SV4-NFAL)}, by X¢ we
denote anX which each sidelength of each input tape is
equivalent; byC[X](L([X¢]) we denote the class of sets
of input tapes accepted by’s(X“’s). We will focuse our
attention on the acceptors which each sidelength of each
input tape is equivalent.
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3 Relationshipbetween
SV4-SPMHFA's and CS-SV4-FA's

In this section, we establish a relation between the ac-
cepting powers of seven-way four-dimensional simple mul-

tihead finite automata and cooperating systems of seven-

way four-dimensional finite sutomata over input tapes
which each sidelength is equivalent. This result will be
used in the latter sections.

Lemma3.1.Foranyk > landX € {N, D},
L[SVA4-SNSPEHXFAC]C L[CS-SVA4-XFA(2k)]

Proof. Let M be an SV4-SNSBRHFAc. We will con-
struct a CS-SV4-XFRk)¢ M’ to simulateM. M’ acts
as follws:

1. M’ simulates the moves of the reading head/6find
all the east, west, south, north up, or down moves of
counting heads of/ by using its(k + 1) finite au-
tomata.

2. M’ simulates all the moves in the future direction of
counting heads o/ by making the down moves of
input heads of its othditk — 1) finite automata.

3. During the simulation, ifd/ moves its reading head
in the future direction, thed/’ makes all of input
heads of finite automata @’ move in the future di-
rection so that all the automata 8f’ can keep their
input heads on the same three-dimensional rectangu-
lar array and can communicate with each other in that
three-dimensional rectangular array.

It is easy to see that/’ can simulatel/. O

Lemma 3.2.For anyk > 1 and anyX € {N, D},

L[CS-SV4-XFA(k)°]CL[SV4-SNSP (%2 — k + 1)-
HXFA].

Proof. LetM = (FA;,FAs,. .. ,FA;)be a CS-SV4-XFAK)°.
We will construct an SV4-SNSP(2k- k + 1)-HXFA®¢ M’
to simulateM. Let R denote the reading head &f’, and
hi, ha, ..., hap2_; denote thek? — k counting heads of
M’. M’ acts as follws:

1. M’ stores the internal states of F&A,,. .. ,FA; inits
finite contorol.

2. For each three-dimensional rectangular array of the
input tape:

(a) M’ simulates the east, west, south, north, up, or
down moves of input heads of F&A;,. .. ,FA
by usingR andhy, ho, ..., hyg.

(b) M’ stores in its finite control the internal state
of each FA, 1 < i < k, when the input head
of FA; leaves the three-dimensional rectangular
array and the order, (dds,...,dg), in which
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the input heads of FA FA,, ..., FA; leave the
plane subsequently (i.e., EAfirstly moves its
input head in the future direction from the three-
dimensional rectangular array. FAsecondly
moves its input head in the future direction from
the three-dimensional rectangular array, and so
on.), andM’ keeps the position where the input
head of each FA1 < i < k, leaves the three-
dimensional rectangular array by the positions
of hi,ho, ..., hg.

(c) Furthermore, for eachi(l < ¢ < k — 1), the
interval between the times at which fAand
FA4,., move their input heads in the future
direction from the three-dimensional rectangu-
lar array is stored by a counter with(n5*)
space bound, which can be realized by using
h2i—1)k—1s P2i—1)k—2,- -+ h@i—1)k, Wheren
is the number of rows (or columns or planes or
three-dimensional rectangular array) of the input
tape.

Note thatM works in O(n%*) time, that is, if an input
tape withn rows (or columns or planes) is acceptediy
then it can be accepted by in O(n5*) time. Thus, it is
easy to verify thaf/’ can simulaté\/. O

From [5],it follows thatU; <y« oo £[SV4-SR:-HXFA€]
= Ui<k<oo L[SV4-SNSPEHXFA€] for any X € {N, D}.
Combining this result with Lemmas 3.1 and 3.2, we have
the follwing thorem.

Theorem  3.1. Ul<k<oo L[SV4-SH:-HXFA]
= U1<k<oo L[CS-SV4-XFA(k)“] forany X € {N, D}.

Corollary 3.1. Foranyk > 1, there is ndCS-SV4-NFAk)
that accepts the set of connected patterns.

Remark 3.1. It is easy to see that for each < 1,
(1)four-dimensional sensing simptehead finite automata

[5] are simulated by cooperating systems bf+ 1) four-
dimensional finite automata, and (2) cooperating systems
of k four-dimensional finite automata are simulated by
four-dimensional sensing simplé + 1) head finite au-
tomata.

Remark 3.2.1tis shown in [9] that (one-dimensional) one-
way simple multihead finite automata snd cooperating sys-
tems of (one-dimensional) one-way deterministic finite au-
tomata are incomparable in accepting power. From this
fact, it follows that SV4-SPMHFAs and CS-SV4-DFAs
are incomparable in accepting power if the input tapes are
restricted to those such thatly(xz) > l1(z) = la(z) =
I3(z). We can also show that SV4-SPMHFA's are more
powerful than CS-SV4-DFAs if the input tapes are re-
stricted to thoser such thatly(z) < li(x) = la(z)
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4 Seven-way versus Eight-Way

In this section, we investigate the difference between the
accepting powers of CS-4-DFA)“’'s [CS-4-NFAk)“’s]
and CS-SV4-DFAL)“’s [CS-SVA4-NFAk)“’s].

Theorem 4.1. For each X € {N,D}, L [CS-4-
DFA(l)C]— Ul<k<oo [:[CS-SV4_XFA(]€)¢} 7& 0.

Proof. LetT} = {z € {0,1}*|3m > 2)[I; () = l2(x)

= l3(z) = l4(z) = m & z[(1,1,1,1), (m,m,m,1)] =
z[(1,1,1,2), (m,m,m,2)]]}. Clearly, Ty € L[CS-4-
DFA(1)€]. From [5], it is easy to see thdf is not in
U1<k<oo L[SV4-SPEHNFAC]. From this fact and Theo-
rem 3.1, the theorem follows. O

From Theorem 4.1, we can get the following corollary.

Corollary 4.1. For each k¥ > 1 and X €
{N,D}, (1)L[CS-SVA-XFAk)IC L[CS-4-XFA(k)],
and (2) U1 <k« L[CS-SVA-XFAk)°] € Ui<k<ooL[CS-
4-XFA(k)“].

5 Nondeterminism versus Determin-
iIsm

In this section, we investigate the difference between
the accpting powers of CS-SV4-NF#)<’'s and CS-SV4-
DFA(k)®’s.

Theorem 4.2, L[CS-SV4-NFA1)°] — Ui<k<oo L[CS-
SV4-DFA(k)<] # 0.

Proof. LetT, = {z € {0,1}W|(3m > 2)[li(x)
lQ(LU) = lg(w) = l4(1‘) = m}&ﬂi,ﬂj(l S ) S ,1
j<ml<k<m)z@jkl) = x0l7,k2) =1].
Clearly, T, € [CS-SV4-NFA(1¥]. From [5], it is easy to
see thatly is not iNU; << L[SV4-SPEHDFAC]. From
this fact and Theorem 3.1, the theorem follows. O

IA I

From Theorem 4.2, we get the following corollary.

Corollary 4.2 For each £ > 1,(1)L[CS-
SV4-DFA(k)°] € L[CS-SV4-NFAKk)C], and (2)
U1<k<ooL[CS-SVA-DFAK)] C  Ui<k<ooL[CS-SV4-

NFA(k)<].

6 Conclusion

We conclude this paper by giving several open problems
except the open problem stated in the previous section.

In this paper, we introduced a cooperating system of four-
dimensional finite automata, and investigated several basic
accepting powers. We conclude this paper by giving an
open problem as follows.

For eachk > 2,
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L[CS-4-DFA(k)] C L[CS-4-NFA(k)“] ?
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