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Abstract: This paper deals with a control scheme for underwater vehicle-manipulator systems with the
dynamics of thrusters in the presence of uncertainties in system parameters. We have developed an adap-
tive controller that overcomes thruster nonlinearities, which cause an uncontrollable system. However, the
structure of the adaptive controller is very complex due to the regressors of dynamic system models and
parameter estimators. In this paper we develop a robust controller whose structure is much simpler than
that of the adaptive controller.
Keywords: Underwater vehicle-manipulator system, thruster dynamics, robust control.

I. INTRODUCTION
An autonomous underwater vehicle with manipu-

lators, referred to as underwater vehicle-manipulator
system (UVMS), is expected to play an important role
in ocean development [1]. Adaptive or robust con-
trol schemes for UVMSs have recently been developed
in the presence of not only hydrodynamic forces act-
ing on the UVMS and the dynamic coupling between
the vehicle and the manipulator but also uncertain-
ties in system parameters [1–5]. In a general type of
UVMS, the vehicle is propelled by marine thrusters,
whereas the manipulator is driven by electrical mo-
tors. Despite such a different actuator system, the
existing control schemes in [1–5] were designed based
on the dynamic system models without the thruster
dynamics to obtain a simply-structured controller. In
each control scheme, furthermore, a high gain control
system is constructed in order to achieve good con-
trol performance. However, the vehicle propelled by
marine thrusters generally has a considerably slower
time response than the manipulator driven by elec-
trical motors [4], and hence the high gains may excite
the ignored thruster dynamics, which degrades control
performance and may even cause instability.

In order to overcome the problem, the authors have
developed an adaptive controller for UVMSs with the
thruster dynamics [6]. Since the slow thruster dynam-
ics was taken into consideration in the development
of controller, control performance can be improved by
the adaptive controller with high gains. However, the
structure of the adaptive controller is very complex,
compared with that of a normal robust controller, due
to the regressors of the dynamic system models and
the parameter estimators. In this paper we develop a
robust controller whose structure is much simpler than
that of the adaptive controller proposed in [6].

II. UVMS MODEL
Consider an underwater vehicle equipped with a

Dm link manipulator with revolute joints. Without
loss of generality, we assume that Dm = Dp + Do,
where Dp and Do are the numbers of translational
and rotational dimensions, respectively. As in [1, 2],
the mathematical model without the thruster dynam-

ics is expressed as

M(ϕ)ẍ(t) + f(ϕ, u) = J(ϕ)−T

[
R̄(ϕ)f̄b(t)
τm(t)

]
(1)

M(ϕ) = J(ϕ)−T M̄(ϕ)J(ϕ)−1 ∈ RDn×Dn

f(·) = J(ϕ)−T [f̄(ϕ, u)
−M̄(ϕ)J(ϕ)−1J̇(ϕ, u)u(t)] ∈ RDn

 (2)

where the explanation of the main symbols is shown
in Table 1. Most of the controllers reported in the
literature of UVMS control are designed for the model
(1) without the dynamics of f̄b(t). In our controller
design, the following dynamic model for thrusters is
used [7]:

f̄b(t) = K̄D(v)v(t)

v̇(t) = −1

2
AD(v)v(t) +

1

2
Bτb(t)

}
(3)

D(v) = diag{|v1|, . . . , |vDm|} ∈ RDm×Dm (4)

Table 1. Symbols in the models (1) to (4)
Da Number of dimension Dp+ 2Do
Dn Number of dimension 2(Dp+Do) = 2Dm
x(t) Signal composed of vehicle’s and manipulator end-ef-

fector’s positions and orientations (∈ RDn)
ϕ(t) Signal composed of vehicle’s orientation and manipu-

lator’s joint angles (∈ RDa)
u(t) Signal composed of vehicle’s translational velocity and

ϕ̇(t) (∈ RDn)
f̄b(t) Thrust forces produced by thruster’s propellers

(∈ RDm)
τm(t) Joint torques of manipulator (∈ RDm)
J(ϕ) Jacobian matrix in the equation ẋ(t) = J(ϕ)u(t)

(∈ RDn×Dn)
R̄(ϕ) Transformation matrix from f̄b(t) to force and torque

concerning inertial coordinate system (∈ RDm×Dm)
M̄(ϕ) Inertia matrix (∈ RDn×Dn)
f̄(·) Signal composed of centrifugal, Coriolis, gravitational

and buoyant forces, fluid drag and bounded disturb-
ances (∈ RDn)

v(t) Shaft velocities of thruster’s propellers (∈ RDm)
τb(t) Shaft torques of thruster’s propellers (∈ RDm)
A, B, Diagonal matrices composed of thruster’s system pa-
K̄ rameters (∈ RDm×Dm)
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Fig. 1. Nonlinearity in thruster dynamics

where the explanation of the main symbols is shown
in Table 1, and vi(t) is the ith element of v(t). Fig. 1,
where f̄bi(t) is the ith element of f̄b(t), shows the
schematic representation of the first equation of
(3). As shown in Fig. 1, the thruster model (3) has
the dead-zone-like nonlinearity that f̄bi(t) = 0 and
df̄bi(t)/dt = 0 when vi(t) = 0.

In this paper, the backstepping control technology
is used to develop a robust controller. To this end,
the state v(t) has to be replaced by the new one
z(t) = D(v)v(t) ∈ RDm. Combining (1) and (3), and
rewriting the signal D(v)v(t) as z(t), we obtain the
new representation

M(ϕ)ẍ(t) + f(ϕ, u) = J(ϕ)−TR(ϕ)K

[
z(t)
τm(t)

]
ż(t) = −AD(v)z(t) +BD(v)τb(t)

 (5)

R(ϕ) =

[
R̄(ϕ) 0
0 Im

]
, K =

[
K̄ 0
0 Im

]
∈ RDn×Dn (6)

where Im ∈ RDm×Dm is an identity matrix.
The model (5) has the following properties useful for

our controller development [1, 7]:
P1) The diagonal elements of A, B and K̄ are positive
constants, and there exists a positive constant cB such
that cB∥ȳ∥2 ≤ ȳTBȳ for any ȳ ∈ RDm.
P2) Each of J(ϕ) and R(ϕ) is composed of the kine-
matic parameters (e.g., length) and the functions of
ϕ(t). In addition, if each of J(ϕ) and R(ϕ) has a full
rank, then there exists a positive constant cRKJ such
that cRKJ∥x̄∥2 ≤ x̄TJ(ϕ)−TR(ϕ)KR(ϕ)TJ(ϕ)−1x̄ for
any x̄ ∈ RDn.
P3) If J(ϕ) has a full rank, then M(ϕ) is symmetric
and positive definite, and there exists a positive con-
stant cM1 such that ∥M(ϕ)∥ ≤ cM1.

III. CONTROLLER DESIGN
The control objective is to develop a controller so

that all signals in the closed loop system are bounded
and the state x(t) tracks the desired trajectory xr(t)
under the condition that the dynamic and hydrody-
namic parameters (e.g., mass and a drag coefficient)
are unknown constants.

In order to meet the objective, we make the follow-
ing assumptions about the model (5) and the reference
model (i.e., the desired trajectory xr(t)):
A1) The signals ϕ(t), x(t), u(t) and v(t) are available.
A2) The kinematic parameters in (5) are known con-
stants.
A3) Each of the matrices J(ϕ) and R(ϕ) in (5) has a
full rank.
A4) The desired trajectory xr(t) and the derivatives
ẋr(t) and ẍr(t) exist and are bounded.
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Fig. 2. Controller design procedure

It follows from the property P2 and the assumptions
A1 and A2 that J(ϕ) and R(ϕ) are known matri-
ces, and hence ẋ(t) is available by using the equation
ẋ(t) = J(ϕ)u(t).

In the following subsections we develop a controller
that achieves the control objective by using a two-step
backstepping procedure, as shown in Fig. 2. The first
step is the design of a robust controller with the inputs
z(t) and τm(t), called robust controller I in this paper.
The second step is the design of a robust controller
with the input τb(t), called robust controller II in this
paper. In this step we first replace z(t) determined in
the first step by the desired trajectory zr(t), and then
design the control input τb(t) for the second equation
of (5) so that z(t) tracks zr(t).

1. Robust Controller I
According to the design procedure shown in Fig. 2,

we make the following assumption in the design of ro-
bust controller I:
A5) The control inputs are z(t) for vehicle control and
τm(t) for manipulator control.

In order to achieve the aforementioned control ob-
jective, we use the tracking errors

s̃(t) = ˙̃x(t) + αx̃(t), x̃(t) = x(t)− xr(t) (7)

where α > 0 is a design parameter. Using the first
equations of (5) and (7), we have the error models

M(ϕ) ˙̃s(t) = J(ϕ)−TR(ϕ)K

[
z(t)
τm(t)

]
− 1

2
Ṁ(·)s̃(t)

+fx(t)− x̃(t)
˙̃x(t) = −αx̃(t) + s̃(t)

 (8)

fx(t) = −f(·) +M(ϕ)[α ˙̃x(t)− ẍr(t)]

+
1

2
Ṁ(·)s̃(t) + x̃(t) ∈ RDn (9)

and fx(t) has the following property useful for our
controller development:
P4) There exists a positive constant cx such that

∥fx(t)∥ ≤ cx ωx(t) (10)

ωx(t) = 1 + α+ α2

+(1 + α2)∥x̃(t)∥2 + ∥u(t)∥2 ∈ R. (11)
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The robust control law for the error models (8)
subject to the assumptions A1 to A5 is given by[

z(t)
τm(t)

]
= −µx(t)R(ϕ)TJ(ϕ)−1s̃(t) (12)

µx(t) = α+ βx ϵ
2 + βx ωx(t)

2 ∈ R (13)

where βx, ϵ > 0 are design parameters. It is shown
that the robust controller (12) guarantees an ultimate
boundedness of the tracking error x̃(t).

2. Robust Controller II
According to the design procedure shown in Fig. 2,

we make the following assumption instead of the as-
sumption A5 in the design of robust controller II:
A6) The control inputs are τb(t) for vehicle control
and τm(t) for manipulator control.

As shown in Fig. 2, we first replace the input z(t)
in (12) by the desired trajectory zr(t), i.e.,[

zr(t)
τm(t)

]
= −µx(t)R(ϕ)TJ(ϕ)−1s̃(t) (14)

and then design robust controller II by using the track-
ing error of z(t). When we choose the error as the nor-
mal one z̃n(t) = z(t) − zr(t), then the error model is

written as ˙̃zn(t) = −AD(v)z(t) − żr(t) + BD(v)τb(t).
This model has a situation where the system is un-
controllable due to lack of the rank of BD(v) when
some of vi(t) equal zero. This situation is caused by
the thruster nonlinearities shown in Fig. 1. In order
to avoid the situation, we propose the following error
instead of the normal one z̃n(t):

z̃(t) = z(t)− zr(t) + 2 ϵ l(v) (15)

l(v) = {Im − E(v)} v̄(v) ∈ RDm

E(v) = diag
{
e−|v1|, . . . , e−|vDm|} ∈ RDm×Dm

v̄(v) = [sgn(v1), . . . , sgn(vDm)]
T ∈ RDm.

 (16)

It should be noted that the signal l(v) is bounded for
all v(t). As a result of adding the term l(v), the error
model of z̃(t) is expressed as

˙̃z(t) = BL(v)τb(t)− Ī TKR(ϕ)TJ(ϕ)−1s̃(t)

+fz(t) (17)

L(v) = D(v) + ϵE(v) ∈ RDm×Dm

Ī =

[
Im
0

]
∈ RDn×Dm

fz(t) = −AL(v)z(t) + Ī TKR(ϕ)TJ(ϕ)−1s̃(t)
−żr(t) ∈ RDm

 (18)

and fz(t) has the following property useful for our
controller development:
P5) There exists a positive constant cz such that

∥fz(t)∥ ≤ cz ωz(t) (19)

ωz(t) = wz2(t) + wz3(t)∥s̃(t)∥ ∈ R
wz1(t) = 1 + ∥u(t)∥2 + ∥z(t)∥+ ∥τm(t)∥
wz2(t) =

[
wz1(t) + α∥ ˙̃x(t)∥

]
µx(t) + ∥L(v)z(t)∥

wz3(t) = 1 + (1 + α2)βx ωx(t)∥x̃(t)∥∥ ˙̃x(t)∥
+
[
µx(t) + βx ωx(t)wz1(t)

]
∥u(t)∥.

(20)

It is noteworthy that the coefficient matrix BL(v) of
the input τb(t) in the error model (17) has a full rank
for all v(t), and hence the error model is controllable
in spite of the thruster nonlinearities.
The robust control law for the error model (17) sub-

ject to the assumptions A1 to A4 and A6 is given by

τb(t) = −µz(t)L(v)
−1z̃(t) (21)

µz(t) = α+ βzωz(t)
2 ∈ R (22)

where βz > 0 is a design parameter.
In addition to the error z̃(t), we use the errors s̃(t)

and x̃(t), introduced for the design of robust controller
I, to guarantee the stability of the overall closed loop
system. The error models (8) concerning s̃(t) and x̃(t)
need to be modified because z(t) in the input (12) for
robust controller I is replaced by zr(t). Using (15), we
rewrite (8) as

M(ϕ) ˙̃s(t) = J(ϕ)−TR(ϕ)K

[
zr(t)
τm(t)

]
− 1

2
Ṁ(·)s̃(t)

+J(ϕ)−TR(ϕ)KĪz̃(t) + fx(t)− x̃(t)
−2ϵJ(ϕ)−TR(ϕ)KĪl(v)

˙̃x(t) = −αx̃(t) + s̃(t)

(23)

For robust controller I and II, the following theorem
holds:
Theorem 1 Consider the robust controller (14) and
(21) for the error models (17) and (23) subject to the
assumptions A1 to A4 and A6. This controller guar-
antees that the signals x(t), ẋ(t), u(t), v(t), z(t), zr(t),
τm(t) and τb(t) in the closed loop system are bounded,
and that the tracking error x̃(t) satisfies the inequality

∥x̃(t)∥2 ≤ ρ1 e
−γαt +

ρ2
αβ

(24)

where ρ1 and ρ2 are positive constants, β = min{βx,
βz}, and γ = min{2 cRKJ/cM1, 2, 2 cB}.

The inequality (24) in Theorem 1 means that an ul-
timate bound of x̃(t) can be arbitrarily reduced by in-
creasing the design parameters α, βx and βz. It should
be noted that a high gain controller can be constructed
for the model (5), since the slow thruster dynamics is
taken into consideration in the design of controller.
Proof: We first choose the positive definite function

V (t)=
1

2

[
s̃(t)TM(ϕ)s̃(t) + x̃(t)T x̃(t) + z̃(t)T z̃(t)

]
(25)

and then the time derivative of V (t) along the solutions
of (17) and (23) is given by

V̇ (t) ≤ −γαV (t) +
γρ2
2β

. (26)

In the derivation of (26), we use the control law (14)
and (21), the inequalities in the properties P1 to P3
and the inequalities

−βx ωx(t)
2s̃(t)TH(ϕ)s̃(t) + s̃(t)T fx(t) ≤

ρ3
2βx

−βx ϵ
2s̃(t)TH(ϕ)s̃(t)

−2 ϵ s̃(t)TJ(ϕ)−TR(ϕ)KĪl(v) ≤ ρ4
2βx

−βzωz(t)
2z̃(t)TBz̃(t) + z̃(t)T fz(t) ≤

ρ5
2βz


(27)

H(ϕ) = J(ϕ)−TR(ϕ)KR(ϕ)TJ(ϕ)−1 ∈ RDn×Dn (28)
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Fig. 3. UVMS for numerical simulation

where ρ3, ρ4 and ρ5 are positive constants. From Lem-
ma 3.2.4 in [8], (26) can be rewritten as

V (t) ≤ e−γαt V (0) +
ρ2
2αβ

. (29)

It follows from (29) that s̃(t), x̃(t), z̃(t) ∈ L∞. Using
(7), (11), (13) to (16), (20) to (22), the assumption
A4 and the inequalities in APPENDIX, we can eas-
ily prove that x(t), ẋ(t), u(t), v(t), z(t), zr(t), τm(t)
and τb(t) ∈ L∞. Moreover, we can directly derive the
inequality (24) from (29), and the proof is complete.

IV. SIMULATION EXAMPLE
In order to confirm the usefulness of our robust con-

troller (14) and (21), we performed numerical simula-
tion. Typical simulation results are presented in this
paper. The UVMS simulated here was an underwater
vehicle with a two-link manipulator, as shown in Fig. 3.
The values of these system parameters were the same
as those used in the reference [6]. In this figure, only
the values of the main parameters are shown. Except
for α, the controller design parameters were chosen as
βx = 0.003, βz = 0.001, ϵ = 1. Each of the desired tra-
jectories of the vehicle’s position and the manipulator
end-effector’s position is set up along a straight path.
Each of the velocities is given by a filtered trapezoidal
function. On the other hand, the desired trajectory of
the vehicle’s orientation is selected to remain at the
initial value.

Fig. 4 shows the simulation result for α = 10. It can
be seen from this figure that x(t) (the vehicle’s position
and orientation and the manipulator end-effector’s po-
sition) tracks the desired trajectory xr(t) in spite of the
nonlinearities of thruster dynamics and the uncertain-
ties of system parameters.

The simulation where α is selected as various values
was carried out. In this paper, the tracking errors for
α = 8, 9, 10 are shown in Fig. 5. As shown in Fig. 5,
the control performance is improved by increasing the
design parameter α.

V. CONCLUSION
In this paper we developed a robust controller for

underwater vehicle-manipulator systems with thruster
dynamics. In the controller development we presented
a new tracking error model that overcomes uncontrol-
lability caused by the thruster dynamics. It is, fur-
thermore, shown that all signals in the closed loop
system are bounded, and that an ultimate bound of
the tracking error can be reduced by increasing con-
troller’s design parameters.
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APPENDIX
Inequalities: The following inequalities, where c∗ is a
positive constant, are used for the design of controller
in this paper:
(i) ∥J(ϕ)∥ ≤ cJ1, ∥J̇(·)∥ ≤ cJ2∥u(t)∥, ∥R(ϕ)K∥ ≤

cRK , ∥R(ϕ)∥ ≤ cR1, ∥Ṙ(·)∥ ≤ cR2∥u(t)∥, ∥u̇(t)∥ ≤
cuwz1(t)

(ii) ∥Ṁ(·)∥ ≤ cM2∥u(t)∥, ∥M(ϕ)−1∥ ≤ cM3, ∥f(·)∥ ≤
cf (1 + ∥u(t)∥2), ∥J(ϕ)−1∥ ≤ cJ3 (if J(ϕ) has a full
rank)
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