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Abstract: This paper considers the adaptive control problem of time delay systems with unknown relative degree 
based on model matching technique. For single-input single-output (SISO) systems, the only known knowledge of the 
relative degree is the upper bound of it. An adaptive control scheme is designed so that all signals in the close-loop 
systems are bounded and the tacking error can converge to zero. A simulation example is included to illustrate the 
proposed adaptive control scheme. 
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I. INTRODUCTION 

Time delay exists in many industrial control systems 
such as chemical process systems, hydraulically 
actuated systems and combustion systems. Researches 
have paid much attention to the control of time delay 
systems since last century. Stability analysis and 
controller design for delay systems are more difficult 
than delay-free systems. Many methods have been 
proposed to deal with time delay systems. The known 
smith predictor proposed in [1] could cancel the time 
delay from the characteristic equation of the closed-loop 
systems. The finite spectrum assignment method in [6] 
could assign the eigenvalues of the closed-loop plant at 
arbitrary prescribed place of the complex plane. 
However, the two methods are difficult to be applied to 
adaptive control. 
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Model matching technique can be easily used to 
adaptive control scheme design. This technique is to 
design a controller so that the transfer function of the 
closed-loop plant coincides exactly with the transfer 
function of the reference model. Controller design for 
linear systems based on model matching technique can 
be found in the book [5]. This method was used to 
controller design for SISO delay systems in [2]. Then 
the result was extended to adaptive control in [3]. For  
multivariable delay systems, a general solution of model  
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matching control of multiple-output-delay systems was 
given in [4]. However, only unknown parameter 
uncertainty was considered in [3-4]. In this paper, we 
will consider the adaptive control of time delay systems 
with unknown relative degree. 

A strict assumption is that the relative degree is 
exactly known in the adaptive control literature. This 
assumption was relaxed in [7] for plants with relative 
degree satisfying1*n *n  . A new model reference 
adaptive control (MRAC) scheme was proposed in [8]. 
Where the control required only the known upper bound 
of the relative degree, this result was obtained at the 
expense of additional complexity in the control and 
adaptive laws. However, to the best of our knowledge, 
there is few results about time delay systems with 
unknown relative degree yet. In this paper, a class of 
SISO delay systems with unknown relative degree is 
considered. An adaptive control scheme is designed 
using the model matching technique.  

This paper is organized as follows. Section 2 is 
problem statement. In section 3, an adaptive control 
scheme is designed for SISO delay systems and the 
stability analysis is completed. A simulation example is 
given in section 4 to illustrate the designed scheme. The 
last section is a conclusion of this paper. 

 

II. PROBLEM STATEMENT 

Consider the SISO linear time-invariant time delay 
systems 

                                  (1) 
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Where y(t) and u(t) are the output and the input, 
respectively. g is the gain, L is the known time delay. 

 and  are monic polynomials with degree m 
and n respectively, denote , 
where 

( )r s ( )p s
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m and n are unknown constants. The following 
assumptions are made for the plant (1). 

Assumption 1: r(s) is a Hurwitz polynomial. 
Assumption 2: The upper bound n  of the unknown 

degree n of p(s) is known, i.e. n n . 
Assumption 3:The relative degree satisfies  *n

* *1 l un n n   *

         

, where  and  are known *
ln *

un
constants.  

The reference model is chosen to be 
                              (2) 

 
Where  is a stable polynomial, its degree is  sdp n , 
the relative degree of the reference model satisfies 

. The reference input *[ ( ( )]r s n )] [d dp s  u ( )t  is a 
uniform bounded piecewise continuous signal. The 
objective is to design an adaptive control scheme so that 
all signals in the closed-loop systems are bounded and 
the plant output tracks the reference model output as 
close as possible for any given reference input. 
 

III. ADAPTIVE CONTROL DESIGN 
First, we design the model matching controller 

structure for the systems (1). The controller design  
procedure is different from that the known relative 
degree case. 

Choose monic stable polynomials and , *( )r s *( )p s
*[ ( )]p s n  , * *. Then the reference model

can be rewritten as 
[ ( )] lr s n n  
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Denote 
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Obviously,   is a realizable dynamical input signal. 
When both r  and p(s) have single or disti

nct roots, write 
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where are roots of  for zi
*( )r s *1, 2, , lk n  n  

and roots of p(s) for * *1, ,l lk n n n n n     ,  
respectively. Obviously, we have 
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Define the polynomial ( )s  satisfying the equation 
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Remark 1: In order to employ the precompensator  
In (7) 
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should satisfy 
          (9) * *[ ( )] [ ( )] [ ( )] [ ( )]r s p s r s p s      
i.e. 
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Therefore, the monic stable polynomial  should *( )r s
be chosen as *[ ( )] lr s n n*   . In this paper, we 
choose * *[ ( )] lr s n n   . 

Define a polynomial equation by 
*( ) ( ) ( ) ( ) ( ) ( ) ( )k s p s gh s r s gr s p s s      (11) 

where k(s) and h(s) are unknown polynomials.  
Theorem 1. There are solutions k(s) and h(s) 

for the polynomial equation (11) with degrees  
*[ ( )] 1lk s n n    and [ ( )] 1h s n   . 

Proof. From the equation (7), * ( ) ( ) ( )gr s p s s  
is of degree at most * 1ln n n  . It is know that 
there are unique polynomial solutions k(s) and h(s).
k(s) of degree at most * 1ln n  , polynomial h(s)  
of degree at most n-1. However, the degree n of

 is not known, the only knowledge of it is ( )p s
n n . Therefore, h(s) is of degree at most 1n  .
The proof is completed. 

Using the equations (5) and (7), we have the 
following integral 
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Using the equation (11), the above equation (12)  
can be rewritten as 

*
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i
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Another delay compensator is needed to design the 
controller. Choose any monic stable polynomial 

( )r s with degree * *[ ( )] [ ( )] lr s r s n n     , then  
we have 
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Define the polynomial ( )s  by 
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Using the equations (14) and (15), we can obtain 
another integral 
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Combining the two integrals in the equation (13)  
and (16) yields 
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Therefore, we can choose the controller u as 
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Substituting the controller in the equation (18) into 
the equation (17), we can obtain 
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It is noting that the polynomials and  are *( )p s *( )r s
chosen to be stable polynomials. Therefore, the  
above equation (19) can be further rewritten as 
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The system output is equal to the reference model 
output. Therefore, the controller in (18) is the desi- 
red controller. In time domain, the controller can  
be rewritten as 
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where p is the differential operator in time domain.
Because *[ ( )] ls n n   , *[ ( )] 1lk s n n    , and 

[ ( )] 1h s n   . Thus, they can be written as 
* *

* *

* *

* *

1
01

1 2
01 2

1 2
1 2 0

( )

( )

( )

l l

l l

l l

l l

n n n n
n n n n

n n n n
n n n n

n n
n n

s q s q s q

k s k s k s k

h s h s h s h

   
  

   
   

 
 

   

  

   







，

，  (22) 

respectively, where the coefficients of the polynomi
als are unknown constants. Define parameter vector 

*

*

* *

0 11

0

1 1

1 , , , , , , ,

, , , , ,1

[

]
l

l

l l
i i

nn n

T
n n

n n n n n
z z

i i
i i

k k h
g

q q g g

e e 



  

 



  
 

 



  

  

 ，

0h

    (23) 
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*

*

1 1

* * *

* * *

*

1( ) ( ), ( ), ( ), ,
( ) ( ) ( )

1 1( ), ( ), , (
( ) ( ) ( )

( )( ), ( ) ( ), ( )
( )

[

]

l

l

n n n

n n

T

p pt u t L u t L y t
r p r p r p

py t u t L u t L
r p r p r p

r pu t u t u t L t
r p





  



  

   

  

 



，

),
 (24) 

Then the controller (22) can be represented as 
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where ˆ ˆ( ), ( , )t t    are the estimates of the real  
parameters , ( )   , respectively. Define the track- 
ing error by 
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Theorem 2. The tracking error can be represent
ed by the following equation 
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where ˆ( ) ( )t t    , ˆ( , ) ( , ) ( )t t       . Lq   Ls         (20) 
denotes a time delay operator, . ( ) ( )q u t u t L L
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In order to design the adaptive law of the  
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When the reference input is the unit step signal, use the 
adaptive control scheme designed in this paper and the 
parameters 2     , the simulation result is 
given in Figure 1. Figure 1 shows that the tracking error  
converges to zero. The designed adaptive control 
scheme achieves the control objective. 
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The augmented error is defined by The augmented error is defined by 
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Choose the following adaptive law Figure 1. Tracking error of the system. 
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V. CONCLUSION   (32) 

This paper design adaptive control schemes for 
delay systems with unknown relative degree. The 
schemes are obtained at the expense of updating more 
parameters than the case of known relative degree.  where , ,    are positive constant parameters to  

be chosen.  
Theorem 3: The adaptive control scheme consi

sts of the controller (25) and the adaptive law (32)
 designed for the plant (1), it can guarantee that al
l signals in the closed-loop plant are bounded and t
he tracking error converges to zero. 
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