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Abstract: Motivated by the fact that many real-world networks exhibit a mixture feature of time-invariant and time-
varying topologies, we propose a heterogeneous agent network as a simple representation. The presented network
consists of two types of nodes: fixed agents and mobile agents, where the connections between fixed agents are
constant, while the mobile agents, abstracted as random walkers in plane, interact with the neighboring agents. Under
the assumption of fast-switching constraint, we further explore synchronized behavior in the heterogeneous network.
The theoretical and numerical results show that the mobile agent density determines synchronization of the considered
heterogeneous network. In particular, compared with the network constructed by the fixed agents, synchronizability is
enhanced and a global synchronization appears by introducing a proper mobile agent density.
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I. INTRODUCTION
Synchronization in large-scale networks of coupled

chaotic oscillators has been intensively investigated in
recent years. It has been demonstrated that two or more
chaotic oscillators can synchronize by mutual couplings
among them, thus a particular interest in this concern
is how the network topology influences the propensity
of the coupled individuals to synchronize [1-2]. The
master stability function (MSF) appraoch relates the
stability of the fully synchronized state to the spectral
properties of the underlying topological structure, and
further provides a framework of analyzing the stability
of synchronous state of large populations of identical
oscillators [3]. Synchronizability of such a network
is then explored based on the notions of MSF and
synchronized region.

So far, most investigations have been established on
static networks, partially because of a successful perfor-
mance of the MSF approach in dealing with synchro-
nization problems of static networks. Having examined
a variety of network topologies in reality, the classical
static network is very restrictive and only reflects a few
practical situations. Then the case of connections which
do evolve in time is more realistic to depict complex
networks, and various synchronization results have been
deduced for complex networks with switching topology
[4-7]. Of particular interest is synchronization of a set
of mobile agents. The mobile agent network, indeed,
can be used to explore many problems such as clock
synchronization in mobile robots [8], swarming animals
or the appearance of synchronized bulk oscillations [9],
consensus problem in multi-agent systems [10] and so
on.

None of two cases above mentioned, i.e. static net-
work model and mobile agent network model, however,

also seems to be an adequate description of many
relevant phenomena. For instance, in social networks,
lobby groups go about inducing voters whose attitudes
are already interacted by a fixed relationship to elect
a candidate or to give up an initial view, where the
lobbies can be depicted by mobile agents, and static
topology seems to be more suitable to characterize inter-
actions between voters [11]; in communication systems,
a mobile wireless network attaches the physical network
by clock synchronization so that data is transmitted
and processed [12]; and in volleyball, the libero as a
mobile agent influences the whole team cohesion, while
other players share relatively fixed connections. Roughly
speaking, there are two types of nodes in all systems
above mentioned, and the network corresponding to
the system can be decomposed into a (relative) static
subnetwork and a switching subnetwork due to the
heterogeneity of nodes. Then there appears a question:
Is synchronization of the heterogeneous network easier
to achieve or not under the existence of mobile agents.
There is no doubt, lobbies in social networks, mobile
wireless sensors, or volleyball libero player, seem to
work as the role of pinned nodes — guiding their
neighbor nodes towards the desired objective — in
synchronizing a complex network of coupled systems
through pinning. This paper is an attempt to explore
synchronized behavior based on a heterogeneous agent
network model. In this paper, we present a heteroge-
neous agent network model to characterize a mixture
feature of real-world network. Under fast-switching con-
straints, we investigate the synchronization problem of
the heterogeneous agent network. Particularly, we focus
on the effect of mobile agents to synchronization of the
static network, which provides an insight into regulatory
mechanisms and design of complex systems.
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II. A HETEROGENEOUS AGENT NETWORK
MODEL

Generally, a complex network consisting of l linearly
and diffusively coupled nodes is described by

ẋi = f(xi)−σ
l

∑
j=1

Gs
i jHx j, i = 1,2, · · · , l, (1)

where xi = (xi1,xi2, · · · ,xin)T ∈ Rn is the state vector of
node i, f(·) : Rn →Rn is a smooth vector-valued function,
governing the dynamics of each isolated node, σ > 0 is
the overall coupling strength, H ∈ Rn×n is the inner link-
ing matrix, and the coupling matrix Gs = (Gs

i j) ∈ Rl×l

is a zero-row sum matrix, describing network topology.
If network (1) is connected in the sense of having
no isolated clusters and edges signify the bidirectional
ability, then Gs is symmetric and all its eigenvalues are
ranked as 0 = µ1 < µ2 ≤ ·· · ≤ µl , where eigenratio Rs =
µl/µ2 is used to measure network synchronizability.

To obtain a heterogeneous agent network, we first
assign the l nodes in network (1) to be fixed agents.
For simplicity, we denote by Nl the set of fixed agents,
and all agents in Nl are uniformly distributed in a two-
dimensional space of size L with periodic boundary con-
ditions . Moreover, we introduce m mobile agents to the
plane, each of which is considered as a random walker
whose position and orientation are updated according to

{
yi(t +∆t) = yi(t)+vi(t)∆t,

θi(t +∆t) = ηi(t +∆t), (2)

where i ∈ Nm, Nm is the set of mobile agents, yi(t)
is the position of agent i in the plane at time t,
ηi(t), i ∈Nm are independent random variables chosen
at each time unit with uniform probability from the
interval [−π,π], vi(t) is the velocity of agent i, and
∆t is the time unit. In the following, assume that the
time unit is sufficiently small so that fast-switching
synchronization is guaranteed. Similar to Ref.[5], each
agent of the heterogeneous network is associated with
a chaotic oscillator whose state variable is characterized
by xi ∈ Rn. Then agent i evolves according to ẋi = f(xi).
Without lack of generality, we consider the case of
Rössler oscillators, where the state dynamics of each
agent is given by ẋi1 = −(

xi2 + xi3
)
, ẋi2 = xi1 + axi2,

ẋi3 = b+xi3
(
xi1−c

)
with xi = (xi1,xi2,xi2)

T, and a = 0.2,
b = 0.2, c = 7.

It is obvious that, the heterogeneous agent network
of order N can be conveniently described by graph
G = {N ,ε}, where N = Nl ∪Nm is the node set
(representing N agents) and ε ⊂N ×N is the edge set
of the graph, which is defined as: Each mobile agent,
i ∈Nm, interacts at a given time with only those agents
located within a neighborhood of an interaction radius
according to the rule of moving neighborhood network.
In detail, agents i and j are said to be adjacent if and
only if

|yi(t)−y j(t)|< r, ∀i ∈Nm, j ∈N (3)

at time t, where r is a parameter that defines the size
of a neighborhood, | · | refers to an induced norm.
For any two fixed agents, denoted by i, j ∈ Nl , the
connection between them is a constant, i.e., Gi j = Gs

i j.
In other words, the constant matrix Gs describes the
topology of network Gl = {Nl ,ε}. Hence, we construct
a heterogeneous agent network by combining fixed and
mobile agents, chaotic oscillators and their dynamical
laws, where the heterogeneous couplings include the
time-invariant connections between nodes in Nl and the
switching connections due to the moving of agents.

Based on above assumptions, the heterogeneous net-
work can be mathematically formulated as:

ẋi = f(xi)−σ
N

∑
j=1

Gi j(t)Hx j, i ∈N , (4)

where the entries of the coupling matrix G(t) =
(Gi j(t))∈RN×N are as follows: for non-diagonal entries,
Gi j(t) = Gs

i j if i, j ∈ Nl , and Gi j(t) = G ji(t) = −1 if
agent i∈Nm or agent j ∈Nm are adjacent at time t; and
the diagonal entries satisfy Gii(t) = −∑N

j=1, j 6=i Gi j(t).
Thus there exists a completely synchronized state in
network (4), i.e., x1(t) = x2(t) = · · · = xN(t) = s(t),
which is a solution of an isolated node ṡ = f(s).

III. ANALYSIS OF SWITCHING
SYNCHRONIZATION

This section investigates the synchronized behavior
of the heterogeneous network under the constraint of
fast-switching. As shown in Ref.[4], Stilwell et al. con-
sider a switching network topology of coupled chaotic
oscillators and provide a fast-switching synchronization
criterion. Following this result, we will show that syn-
chronization of network (4) can be also assessed by a
particular static network.

We first give an average of G(t) for network (4). Con-
sider an infinite sequence of contiguous time intervals
[tk, tk+1), k = 0,1, · · · , with t0 = 0 and tk+1 − tk = ∆t.
It is easy to see that G(t) is a constant matrix for any
t ∈ [tk, tk+1) and k = 0,1, · · · . For simplicity, let Gk be the
constant coupling matrix at k-th interval [tk, tk+1), then
we derive the average of coupling matrix G(t) satisfying

G =
o

∑
i=1

piGi, (5)

where pi is the probability that topological configuration
i occurs, o is the number of possible configurations.

Recalling the evolution of network (4), we learn that
the connections between any fixed agents are time-
invariant, i.e., Gi j = Gi j(t) = Gs

i j, ∀i, j ∈ Nl . And for
other cases, Gi j = ∑m

i=1 piGi
i j, i ∈Nm or j ∈Nm. There-

fore, we write down the non-diagonal entries of G for
network (4):

Gi j =
{

Gs
i j, if i, j ∈Nl

−p, otherwise
(6)
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where p = πr2/L2 is the probability that two agents are
neighbors, Il is an l× l identity matrix. By elementary
transformation, we calculate the N eigenvalues of the
average Laplacian G as

λi =
{

0,µ j +mp, pN, · · · , pN︸ ︷︷ ︸
m

, j = 2, · · · , l
}

. (7)

Note that G is a symmetric constant matrix, then
synchronization of switching network (4) can be inves-
tigated by the network reading

ẋi = f(xi)−σ
N

∑
j=1

Gi jHx j. (8)

Let ei be the variation on the i-th node and e =(
eT

1 ,eT
2 , · · · ,eT

N
)T be the collection of variations. Then

linearizing network (8) at xi = s yields ė =
[
IN⊗J f (s)−

σG⊗H
]
e, where J f is the Jacobian of the function

f evaluated at s(t), and ⊗ stands for the Kronecker
product. It is easy to verify that the linear stability of the
synchronized state s(t) for network (8) can be studied
by diagonalizing the variational equations of network (8)
into N blocks of the form

ξ̇i = (J f −σλiH)ξi, i = 1, · · · ,N, (9)

where ξi = (U ⊗ In)ei ∈ Rn, U ∈ RN×N is a unitary ma-
trix such that UTGU = diag(λ1, · · · ,λN). Furthermore,
the synchronized state s(t) is stable if the Lyapunov
exponents for the N blocks are negative i.e., Γ(σ µi) < 0
for i = 2, · · · ,N. For the coupled Rössler oscillator with
H = diag(1,0,0), there is a single interval (γ1,γ2), in
which the largest Lyapunov exponent is negative, where
γ1 and γ2 are constant. Therefore, synchronization of
network (4) can be guaranteed by

γ1

σ
< λ2 < λN <

γ2

σ
, (10)

where λ2 and λN are the second smallest and largest
eigenvalues of matrix G, respectively. Based on Eq.(7)
and Eq.(10), we thus derive the synchronization condi-
tion for the heterogeneous network.

IV. DISCUSSIONS AND NUMERICAL
SIMULATIONS

The existence of mobile agents affects the eigen-
values of G, which further plays an important role in
synchronizing network (4). It is noted that Eq.(10) is
fulfilled for some values of σ when the eigenratio R
satisfies the following inequality R≡ λN

λ2
< γ2

γ1
. We then

characterize, similarly to the definition in static network,
the synchronizability of network (4) with R.

Compared with the static network (1), the heteroge-
neous network (4) shows a better synchronizability if
R < Rs. By solving this inequality, we derive ρm > ρc

m,
where ρc

m is a critical value of ρm satisfying

ρc
m =

Rs

Rs−1
·max{0,

µ2

κρl
−1,

1
Rs −

µ2

κρl
}, (11)

ρl = l/L2 is the fixed agent density and ρm = m/L2

is the mobile agent density. Namely, a smaller ρm
probably means the heterogeneous network (4) is harder
to achieve synchronization from the point of view of
the interval width in Eq.(10), while synchronization is
probably easier to realize by assigning a larger mobile
agent density.

Though a larger mobile agent density ρm means a
better synchronizability of network (4), it is likely to lead
to the largest eigenvalue of G over the upper bound in
Eq.(10). And synchronization is lost with a large mobile
agent density for a particular heterogeneous network.
According to Eq.(10), an upper bound of ρm is given by

ρm < ρu
m =

γ2

σκ
−max{ρl ,

µl

κ
}. (12)

An obvious result is that, no matter what value of ρm
is, the heterogeneous network (4) is not synchronizable
about synchronized state in the condition of µl > γ2/σ ,
where the expression µl > γ2/σ implies a nonsynchro-
nized motion of static network (1). It is not difficult to
see the existence of mobile agents fails to synchronize
the considered heterogeneous network. As a result, we
favor the introduction of mobile agents for those static
networks (1) whose eigencoupling σ µl is located in the
negative region of the MSF. In the following, we always
assume that σ µl < γ2 holds.

Similarly, we derive a lower bound of mobile agent
density from Eq.(10), i.e.,

ρm > ρ l
m =

γ1

σκ
−min{ρl ,

µ2

κ
}. (13)

To validate our theoretical findings, we consider the
static network Gs to be the case of a Barabási-Albert
(BA) network [13], where the parameters of BA model
are given by m0 = m = 3, and the degree distribution fol-
lows a power law. Fig.1 reports a numerical simulation,
where synchronization error δx(t) = (∑N

i=2 ||xi−x1||)/N.
As explained in Fig.1, the considered network achieves
synchronization again when ρm > 0.2. Also notice that a
synchronized motion disappears as ρm > 0.5 due to the
bounded synchronization region.
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Fig.1. Synchronization index < δx > vs mobile agent density ρm.
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Fig.2. Synchronization index < δx > vs mobile agent density ρm.

Under the other case σ µ2 < γ1, it has been shown
by MSF that static network (1) cannot synchronize.
However, synchronization can be easily realized by
introducing some, even only one mobile agent to net-
work (1) according to Eq.(13). A numerical example is
given in Fig.2 to validate the analytical result, where
µ2 is assigned to be zero. It is obvious that Gl is an
unconnected graph, then a global synchronization of
static network (1) cannot be accessed due to isolated
clusters in Gl . We observe from Fig.2 that adding several
mobile agents (in simulations, five mobile agents are
introduced to network at t = 400s) can guarantee net-
work synchronization. The role of mobile agents works
as a bridge which creates connections among different
isolated clusters.

From above discussions, there does exist a bounded
region of mobile agent density: synchronization of net-
work (4) is ensured if and only if ρm ∈ (ρ l

m,ρu
m).

For a particular static network (1) with given Gs and
ρm, a too large or a too small mobile agent density
will prevent heterogeneous network (4) from achieving
synchronization.

V. CONCLUSIONS

In this paper, we propose a heterogenous agent net-
work to capture a mixture feature of time-invariant
and time-varying topologies existing in many real-world
complex network. The heterogeneous network consists
of a certain number of mobile agents and fixed agents,
each of which is equipped with a chaotic oscillator in
a planar space. In particular, the connections between
fixed agents are assigned to be time-invariant, and the
mobile agents, abstracted as random walkers, interact
with the neighboring agents. Then the heterogenous
agent network can be simply regarded as a mixture of a
static subnetwork and a switching subnetwork. Under
the constraint of fast-switching, we theoretically and
numerically show that synchronization of the heteroge-
neous network depends on the mobile agent density, the
fixed agent density and the spectrum of time-invariant
subnetwork. For a given heterogeneous network, syn-
chronization motion can be established if mobile agent
density of the network lies in an bounded interval, in

which its two end-points are determined by the fixed
agent density and the static topology. It is worth noting
that, compared with the static network, synchronizability
can be enhanced when a proper density of mobile agents
is introduced to the heterogeneous network. All these re-
sults may provide some insights for the future theoretical
investigations and practical engineering designs.
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