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Abstract: This paper is devoted to the robust consensus control of multi-agent systems with model parameter un-
certainties and external disturbances for networks with switching topology. In particular, a sufficient condition for the
consensus performance with a givenH∞ disturbance attenuation level is established for the multi-agent system governed
by general linear differential equations, and meanwhile the unknown feedback matrix of the proposed distributed state
feedback protocol is determined. The condition is given in terms of linear matrix inequalities (LMIs) and can be easily
verified. A numerical example is included to validate the theoretical results.
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I. INTRODUCTION

Recently, some researchers have studied the consensus
problem of multi-agent systems with various external
disturbances and random communication noises [1]-[6].
However, unavoidable model and parameter uncertain-
ties in the agents’ dynamics have not been considered in
the existing literature. This motivates us to investigate
the consensus problem for multi-agent systems with both
model uncertainties and external disturbances.

In this paper, we study the consensus control for
networks of multiple agents modeled by general high-
dimensional linear differential equations with both
model uncertainties and external disturbances, and pro-
pose a distributed protocol with an undetermined state
feedback matrix. In order to use the existing robust
H∞ theory of linear systems, a controlled output is
defined to reformulate the consensus control problem
as a robustH∞ control problem, and a series of model
transformations are conducted to convert the original
singular closed-loop system to be an equivalent sta-
bilized reduced-order one. Then, sufficient conditions
in terms of LMIs are derived to ensure the consensus
performance with a givenH∞ index for the disturbed
multi-agent system without and with model uncertainties
respectively, and the feedback matrix of the proposed
protocol is determined accordingly.

II. PROBLEM REFORMULATION AND
PROTOCOL DESIGN

A. Problem statement and preliminaries

Consider a multi-agent system consisting ofn identi-
cal agents with theith one modeled by

ẋi(t) = Axi(t)+ B1ωi(t)+ B2ui(t), (1)

wherexi(t) ∈ R
m is the state,ui(t) ∈ R

m2 is the control
input or protocol, andωi(t) ∈ R

m1 is the external dis-

turbance that belongs toL2[0,∞), the space of square-
integrable vector functions over[0,∞). If system matri-
ces A, B1, B2 are uncertain, they are assumed to take
the following forms:

A=A0+∆A(t),B1=B10+∆B1(t),B2=B20+∆B2(t), (2)

where A0, B10, B20 are constant matrices, and∆A(t),
∆B1(t), ∆B2(t) are time-varying uncertain matrices sat-
isfying

[∆A(t) ∆B1(t) ∆B2(t)] = EΣ(t)[F1 F2 F3]. (3)

In (3), E and Fi (i = 1,2,3) are constant matrices of
appropriate dimensions, andΣ(t) is an unknown time-
varying matrix that satisfiesΣT(t)Σ(t) ≤ I. It is also
assumed that(A0,B20) is stabilized. A protocolui(t) is
said to asymptotically solve the consensus problem, if
and only if the states of agents satisfy

lim
t→∞

[xi(t)− x j(t)] = 0, ∀i, j ∈ {1, · · · ,n} , N .

Undirected graphs are used to model the interac-
tion topologies among agents. LetG =(V ,E ,A ) be
an undirected weighted graph of ordern with the set
of nodesV = {v1, · · · ,vn}, the set of undirected edges
E ⊆V ×V , and a symmetric adjacency matrixA = [ai j]
with weighting factorsai j ≥ 0. It is stipulated that the
adjacency elements associated with edges are positive,
i.e., (vi,v j) or (v j,vi) ∈ E if and only if ai j = a ji >

0. In graphG , node vi represents theith agent, and
edge (vi,v j) represents that information is exchanged
between agentsi and j. Then the set of neighbors of
vi is denoted byNi = {v j ∈ V : (vi,v j) ∈ E }. The
Laplacian of a weighted graphG is defined asL =
D −A, where diagonal matrixD = diag{d1, · · · ,dn} is
named the degree matrix ofG , whose diagonal elements
are di = ∑n

j=1 ai j. To describe the variable topologies,
a piecewise-constant switching signal functionσ(t) :
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[0,∞) 7→ {1, · · · ,M} , M is defined, whereM ∈ Z
+

denotes the total number of all possible undirected
interaction graphs. The interaction graph at time instant
t is denoted byGσ(t), and the corresponding Laplacian
is Lσ(t). In this paper, the switching graphsGσ(t) are
assumed to be always connected for allσ(t) ∈ M .

B. Problem reformulation

Define controlled output functions

zi(t) = xi(t)−
1
n

n

∑
j=1

x j(t), i = 1, · · · ,n (4)

to reformulate the consensus control problem of multi-
agent system (1) as the followingH∞ control problem:

ẋ(t) =(In ⊗A)x(t)+(In ⊗B1)ω(t)+(In ⊗B2)u(t)
z(t) =(Lc ⊗ Im)x(t),

(5)

where x(t) = [xT
1(t) · · ·xT

n (t)]T ∈ R
mn, ω(t) =

[ωT
1 (t) · · ·ωT

n (t)]T ∈ R
m1n, u(t) = [uT

1(t) · · ·uT
n (t)]T ∈

R
m2n, z(t) = [zT

1(t) · · · zT
n (t)]T ∈ R

mn, and Lc = [Lci j ] ∈
R

n×n is defined by

Lci j =

{
n−1

n , i = j

− 1
n , i 6= j

.

Therefore, the objective is to design a distributed proto-
col ui(t) (i ∈ N ) such that

‖Tzω(s)‖∞=sup
ν∈R

σ̄(Tzω(jν))= sup
06=ω(t)∈L2[0,∞)

‖z(t)‖2

‖ω(t)‖2
< γ

holds, whereγ > 0 is a givenH∞ performance index.

C. Protocol design and model transformation

Using the neighbors’ local information, the distributed
protocol of agenti is designed as

ui(t) = K ∑
j∈Ni(t)

ai j(t)[xi(t)−x j(t)], (6)

whereNi(t) is the neighbor set of agenti at time instant
t, ai j(t) are adjacency elements of the interaction graph
Gσ(t), and K ∈ R

m2×m is an undetermined feedback
matrix. Substituting protocol (6) into the system (5)
results in the following closed-loop system

ẋ(t)=(In⊗A+Lσ(t)⊗B2K)x(t)+(In⊗B1)ω(t)
z(t)=(Lc⊗Im)x(t),

(7)

whereLσ(t) is the Laplacian matrix of graphGσ(t).
Note that the symmetric matrixLσ(t) has a zero

eigenvalue. Thus, the state matrix of system (7) can
not be robust stable ifA0 is unstable. In order to
apply theH∞ theory, we first convert the system (7) to
be an equivalent reduced-order one that is completely
stabilized, by a series of model transformations. This
will be presented in the following.

By Lemmas 1 and 5 of [4], there exists an orthogonal
matrix U ∈ R

n×n such that

UTLcU=

[
In−1 0
0 0

]
,L̄c,U

TLσ(t)U=

[
L1σ(t) 0

0 0

]
,L̄σ(t), (8)

and L1σ(t) is positive definite since the graphGσ(t) is
connected. For the convenience of discussion, denote
U = [U1 U2] with U2 = 1√

n being its last column. Let

x̂(t)=(UT⊗Im)x̄(t)=

[
(UT

1 ⊗Im)x̄(t)
(UT

2 ⊗Im)x̄(t)

]
,
[

x̂1(t)
x̂2(t)

]

ω̂(t)=(UT⊗Im1)ω(t)=

[
(UT

1 ⊗Im1)ω(t)
(UT

2 ⊗Im1)ω(t)

]
,
[

ω̂1(t)
ω̂2(t)

]

ẑ(t)=(UT⊗Im)z(t)=

[
(UT

1 ⊗Im)z(t)
(UT

2 ⊗Im)z(t)

]
,
[

ẑ1(t)
ẑ2(t)

]
,

(9)

where

x̄(t) = x(t)− 1
n
⊗ (

n

∑
j=1

x j(t)). (10)

From (7)-(10), we have

˙̂x(t)=(L̄c⊗A+L̄cL̄σ(t)⊗B2K)x̂(t)+(L̄c⊗B1)ω̂(t)
ẑ(t)=(L̄c ⊗ Im)x̂(t)

(11)

that can be divided into the following two independent
subsystems:

˙̂x1(t)=(In−1⊗A+L1σ(t)⊗B2K)x̂1(t)+(In−1⊗B1)ω̂1(t)

,Hσ(t)x̂
1(t)+Gω̂1(t)

ẑ1(t)=x̂1(t)

(12)

and ˙̂x2(t) = 0, ẑ2(t) = 0. Then by the definition ofH∞
norm, it can be proved that‖Tzω(s)‖∞ = ‖Tẑω̂(s)‖∞ =
‖Tẑ1ω̂1(s)‖∞. In addition, the state matrixIn−1 ⊗ A +
L1σ(t) ⊗B2K can be robust stable by designing an ap-
propriate matrixK, since(A0,B20) is assumed to be sta-
bilized and matrixL1σ(t) is positive definite. Therefore,
we can analyze theH∞ performance of the stabilized
reduced-order system (12) instead of (11). To sum-
marize, the consensus performance of the closed-loop
multi-agent system (7) is achieved withH∞ disturbance
attenuation indexγ, if the system (12) is asymptotically
stable and satisfies theH∞ level γ.

III. CONDITIONS FOR ROBUST H∞
CONSENSUS

In this section, the robustH∞ performance of switched
system (12) is analyzed, and sufficient conditions are
derived to ensure the desired consensus performance of
multi-agent system (1) under the protocol (6). First, we
consider the multi-agent system (1) by neglecting matrix
uncertainties in (2), i.e., matricesA, B1, B2 are known
constants. Denoteλσ(t)i as theith real positive eigen-
value of matrixLσ(t), i = 1, · · · ,n− 1. Let σ∗(t)i∗ and
σ∗(t)i∗ be the subscripts associated with the minimum
and the maximum nonzero eigenvalues of all Laplacian
matricesLσ(t), respectively.

The following lemma is derived from Lemma 3.2 of
[5] and Schur Complement Formula:

Lemma 1: For a given indexγ > 0, the switched
system (12) is asymptotically stable and satisfies
‖Tẑ1ω̂1(s)‖∞ < γ, if there exists a positive definite matrix
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P ∈ R
(n−1)m×(n−1)m such that

HT
σ(t)P+ PHσ(t) + γ−2PGGTP+ I < 0 (13)

holds for∀σ(t) ∈ M .
Theorem 1: Under protocol (6), the multi-agent sys-

tem (1) achieves consensus with a givenH∞ disturbance
attenuation indexγ, if there existP ∈ R

m×m > 0 and
Q ∈ R

m2×m such that the linear matrix inequality (LMI)
[
PAT+AP+λσ(t)iQ

TBT
2+λσ(t)iB2Q+γ−2B1BT

1 P
P −I

]
<0 (14)

is satisfied forσ(t)i = σ∗(t)i∗ andσ∗(t)i∗. If the above
two LMIs are feasible, then the feedback matrix of the
consensus protocol isK = QP−1.

Proof : By Lemma 1, the system (12) is asymptotically
stable and satisfies‖Tẑ1ω̂1(s)‖∞ < γ, if there exists a
positive definite matrixP ∈ R

(n−1)m×(n−1)m satisfying
(13). Particularly, takeP = In−1⊗X with X ∈R

m×m
> 0.

Since L1σ(t) is positive definite, there exists an or-
thogonal matrixU1σ(t) such thatUT

1σ(t)L1σ(t)U1σ(t) =

diag{λσ(t)1, · · · ,λσ(t)(n−1)}. Let Ū1σ(t) =U1σ(t)⊗Im. Ac-
cording to the proof of Theorem 3.3 in [5], pre- and
post-multiplying the matrix inequality (13) with̄UT

1σ(t)
and Ū1σ(t), respectively, can yield a group of matrix
inequalities

XA+ATX+λσ(t)iXB2K+λσ(t)iK
TBT

2X+γ−2XB1B
T
1X+I<0

(15)

σ(t) = 1, · · · ,M, i = 1, · · · ,n− 1, which are equivalent
to (13). Due to Schur Complement Formula, inequality
(15) is also equivalent to
[
(A+λσ(t)iB2K)TX+X(A+λσ(t)iB2K)+γ−2XB1BT

1X I
I −I

]
<0.

(16)

Then pre- and post-multiplying the inequality (16) with
diag{X−1, I} yields (14) withP = X−1 andQ = KP. To
summarize, the multi-agent system (1) achieves consen-
sus with a givenH∞ disturbance attenuation indexγ, if
the LMI (14) holds for∀σ(t)i.

Due to the convex property of LMIs, if (14) holds
whenλσ(t)i takes its extreme valuesλσ∗(t)i∗ andλσ∗(t)i∗ ,
then the LMI (14) holds for∀σ(t)i, and the desired
consensus performance is guaranteed. Further, if the
above condition is satisfied, then fromQ = KP, it
is obtained that the feedback matrix of the proposed
consensus protocol isK = QP−1. �

Based on the previous development, the consensus
condition is now given for the multi-agent system (1)
with model uncertainties (2). To achieve this, we adopt
the following lemma.

Lemma 2 [7]: Given symmetric matricesX ,Y,Z ∈
R

n×n satisfyingX ≥ 0, Y < 0, Z ≥ 0, if for any nonzero
vectorζ ∈ R

n, (ζ TY ζ )2−4ζ TXζζ TZζ > 0 holds, then
there exists a scalarλ > 0 such thatλ 2X +λY +Z < 0.

Theorem 2: Under protocol (6), the multi-agent
system (1) with model uncertainties (2) can achieve

consensus with a givenH∞ disturbance attenuation index
γ, if for a scalarλ > 0, there existP ∈ R

m×m > 0 and
Q ∈ R

m2×m such that the LMI



Ψσ(t)i B10 P 1
λ (F1P+λσ(t)iF3Q)T

BT
10 −γ−2I 0 1

λ FT
2

P 0 −I 0
1
λ (F1P+λσ(t)iF3Q) 1

λ F2 0 −I


<0

Ψσ(t)i=PAT
0+A0P+λσ(t)iQ

TBT
20+λσ(t)iB20Q+λ 2EET

(17)

is satisfied forσ(t)i = σ∗(t)i∗ andσ∗(t)i∗. If the above
two LMIs are feasible, then the feedback matrix of the
consensus protocol isK = QP−1.

Proof : Due to Schur Complement Formula, the matrix
inequality (14) in Theorem 1 is equivalent to

Ξσ(t)i=




PAT+AP+λσ(t)iQ

TBT
2+λσ(t)iB2Q B1 P

BT
1 −γ2I 0

P 0 −I



<0.

By the definition of negative definite matrices,Ξσ(t)i < 0
if and only if ξ TΞσ(t)iξ < 0 holds for any nonzero
vector ξ . Hence, to ensure the desired robustH∞ con-
sensus performance, we only need to find conditions for
ξ TΞσ(t)iξ < 0 in the presence of uncertainties (2).

From (2) and (3), it is obtained thatΞσ(t)i = Γσ(t)i +
∆Γσ(t)i, where

Γσ(t)i=




PAT
0+A0P+λσ(t)iQ

TBT
20+λσ(t)iB20Q B10 P

BT
10 −γ2I 0
P 0 −I




∆Γσ(t)i=




∆Γ11 EΣ(t)F2 0

FT
2 Σ(t)TET 0 0

0 0 0





with ∆Γ11 = PFT
1 Σ(t)TET+EΣ(t)F1P+λσ(t)iQ

TFT
3 Σ(t)T

ET+λσ(t)iEΣ(t)F3Q. That is, model uncertainties are de-
coupled from the determined constant system matrices.
Let ξ = [ξ T

1 ξ T
2 ξ T

3 ]T be a nonzero vector. The inequality
ξ TΞσ(t)iξ < 0 holds if and only if

ξTΞσ(t)iξ
=ξTΓσ(t)iξ+2ξ T

1EΣ(t)[(F1P+λσ(t)iF3Q)ξ1+F2ξ2]<0
(18)

is satisfied for anyΣT(t)Σ(t) ≤ I. Actually, if one takes

Σ(t) =
(ETξ1)[(F1P+ λσ(t)iF3Q)ξ1 + F2ξ2]

T

||ETξ1||2||(F1P + λσ(t)iF3Q)ξ1 + F2ξ2||2
, (19)

then ξ TΞσ(t)iξ reaches its maximum value. Therefore,
(18) holds for anyΣ(t) satisfyingΣT(t)Σ(t) ≤ I if and
only if it holds whenΣ(t) is taken as (19). Instituting
(19) into (18) leads to

ξ TΓσ(t)iξ +2
√

ξ TXξ
√

ξ TZσ(t)iξ < 0, (20)

where

X=




EET 0 0
0 0 0
0 0 0


≥ 0
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Zσ(t)i=




Z11 (F1P+λσ(t)iF3Q)TF2 0

FT
2 (F1P+ λσ(t)iF3Q) FT

2 F2 0
0 0 0



≥0

Z11=(F1P+ λσ(t)iF3Q)T(F1P+ λσ(t)iF3Q).
(21)

Obviously, (20) is satisfied if and only ifΓσ(t)i < 0 and

(ξ TΓσ(t)iξ )2−4ξ TXξ ξ TZσ(t)iξ > 0. (22)

Using Lemma 2, we obtain that (22) holds if and only
if there exists a scalarλ > 0 satisfyingΓσ(t)i + λ 2X +

λ−2Zσ(t)i < 0. Inserting (21) into the above inequality
results in

Γσ(t)i + STS < 0, (23)

S =

[
λ ET 0 0

λ−1(F1P+ λσ(t)iF3Q) λ−1F2 0

]
.

According to Schur Complement Formula, the matrix
inequality (23) becomes

[
Γσ(t)i ST

S −I

]
< 0,

which is further equivalent to (17). Combining with
Theorem 1, we know that if for a scalarλ > 0, there
exist P > 0 and Q such that the LMI (17) holds for
σ(t)i = σ∗(t)i∗ andσ∗(t)i∗, then the multi-agent system
(1) with model uncertainties (2) achieves consensus with
H∞ index γ. Further, if the two LMIs are feasible, then
K = QP−1 is obtained. �

IV. SIMULATION RESULTS

Consider a network of four agents, and the matrices
in (2) and (3) are given by

A0 =

[
0 −1
2 1

]
, B10 =

[
0
1

]
, B20 =

[
1 0
0 2

]
,

E =

[
0 0

0.8 0.8

]
, Σ(t) =

[
sin(10t) 0

0 0

]
,

F1 =

[
1.2 0
0 1.2

]
, F2 =

[
0.5
0.5

]
, F3 =

[
0.8 0
0 0.8

]
.

The external disturbance is assumed to be band-limited
white noise. TheH∞ performance index is chosen asγ =
1. For simplicity, the interaction graphs are constrained
to be within the set shown in Fig. 1, whose nonzero
weighting factors are all 1.

Fig.1. Undirected interaction graphs.

Fig. 2 depicts the state trajectories of four agents
xi(t) = [xi,1(t) xi,2(t)]T under the proposed protocol (6).
Fig. 3 gives the energy relationship between the con-
trolled output z(t) and the external disturbanceω(t).
Obviously, the consensus is achieved withH∞ distur-
bance attenuation index 1.

V. CONCLUSIONS

This paper has addressed the consensus control prob-
lem for switching networks of autonomous agents with
both model uncertainties and external disturbances by
robustH∞ theory. Time delays arising in the information
exchange among agents are not considered in this paper,
and this will be a topic of future research.
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