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Abstract: The stabilization problem of a linear time-invariant system with lumped and distributed delays in the control
will be investigated by the backstepping method. A transformation is introduced firstly to reduce the system with
distributed input delay into a system with lumped input delay. The transformation kernel can be expressed explicitly
through solving a Cauchy problem of ODEs. Then the backstepping arguments presented by Krstic and Smyshlyaev in
[1] can be applied to work out a feedback control for the original system, where the key point is to model the lumped
delay by a first-order hyperbolic partial differential equation.
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I. INTRODUCTION

In many engineering systems, the variation of the
system state depends on past states. Such a character is
called time-delay. Time-delay systems are also known
as systems with aftereffect or dead-time, hereditary
systems, which have attracted the attention of many
researchers because of their importance and widespread
occurrence. They are special infinite dimensional sys-
tems, and researches indicate that the time delays lead
to some complexity. On one hand, the time delays may
deteriorate the control performance or even cause the
instability of a dynamic system. On the other hand,
several studies have shown that voluntary introduction
of delays can also benefit the control.

The stabilization for time-delay systems is a topic of
great importance and has received increasing attention
[2], [3], [4], [5]. Smith-predictor is well-known for
designing linear feedback controllers for systems with
delay. However, this method is confined to stable plants
because it implies pole-zero cancellations. Moreover,
Smith predictor is sensitive to parameter errors. The
model reduction method is another important approach
to deal with the systems with input delays, where the
so-called Artstein model reduction is often involved.
Briefly speaking, the model reduction is a transformation
through which one can simplify a dynamic system
with input delay into an equivalent delay-free system.
Considering the following linear system with lumped
input delay,

ẋ(t) = Ax(t)+B0u(t)+B1u(t− τ), (1)

introduce the new variable y(t) defined by

y(t) = x(t)+ e−Aτ
∫ t

t−τ
eA(t−s)B1u(s)ds. (2)

Then (1) is reduced to a delay-free system

ẏ(t) = Ay(t)+
(
B0 + e−Aτ B1

)
u(t).

It is straightforward to compute a state feedback control
u(t) = Ky(t), provided that (A,B0 + e−Aτ B1) is stabiliz-
able. Thus the system (1) can be stabilized by the control
law

u(t) = K
(

x(t)+ e−Aτ
∫ t

t−τ
eA(t−s)B1u(s)ds

)
. (3)

Kwon and Pearson were the first who clearly put
forward the reduction transformation (2) for a system
with lumped input delay [4]. In [4], the authors applied
the receding horizon method to the stabilization of
linear time-invariant systems with lumped input delay. It
was shown how the receding horizon control suggested
the reduction transformation (2). Afterwards, Artstein
established the general abstract theory of the reduction
method in [2]. According to this theory, one can trans-
form general linear time-varying systems into delay-free
systems. It has been shown by many researches that
the reduction provides a strong tool for manipulating
systems with delays in the controls, even for linear
systems with time-varying lumped input delay [2].

It has also been pointed out in [5] that any lumped
time-delay U(t) = u(t − τ) can be represented by a
classical transport equation:{

τ ∂
∂ t v(x, t)+ ∂

∂x v(x, t) = 0, x ∈ [0,1],
v(0, t) = u(t), v(1, t) =U(t).

In other words, we can use a first-order hyperbolic par-
tial differential equation to model the lumped delay. A
problem of boundary feedback stabilization of first-order
hyperbolic partial differential equations was considered
in [1], where the authors applied the backstepping
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method to design controllers. As an example of the
applications, the authors studied the stabilization of a
linear time-invariant system with lumped input delay by
combining the backstepping design for hyperbolic PDEs
with the backstepping design for linear ODEs.

Motivated by the researches mentioned above, we
will investigate the stabilization problem of a linear
time-invariant system with lumped and distributed de-
lays in the control by the backstepping method. We
first transform the linear system with distributed input
delay into a system with lumped input delay, where
the transformation kernel is determined by a Cauchy
problem of ODEs. This transformation kernel can be
expressed explicitly. Then the procedure presented in
[1] can be applied in our circumstance. Concretely,
we model the lumped delay by a first-order hyperbolic
partial differential equation, and replace the resulting
system in the first step by an ODE-PDE cascade. After
introducing a backstepping transformation, we obtain the
target system whose origin is exponentially stable. Thus
we can work out the corresponding feedback control law
for the original system.

The rest of this paper is organized as follows. In
section 2, the linear time-invariant system with lumped
and distributed delay under consideration is given. The
feedback stabilization control law is deduced in detail
based on an integral transformation and the backstepping
method, and the main result is presented. The conclusion
and some remarks are given in Section 3.

II. Design of feedback controllers and main results

We now consider the following linear time-invariant
system,

Ẋ(t) = AX(t)+B1u(t)+B2u(t− τ)
+
∫ τ

0
D(s)u(t− s)ds, (4)

where X(·) ∈Rn denotes the state vector, and u(·) ∈Rm

is the vector of control input. The constant matrices A∈
Rn×n and B1,B2 ∈ Rn×m are known. The lumped delay
appears in the term B2u(t−τ), while the distributed de-
lay is represented by the integral term

∫ τ
0 D(s)u(t−s)ds.

The known function D(·) : [0,τ]→ Rn×m is assumed to
be continuous, and the positive constant τ denotes the
known time delay.

It is to be noticed that X(t) is only the state of lumped
portion of the delay system. The complete state of the
system (4) at time t is {X(t);u(s), t− τ ≤ s < t}. Then
the initial conditions are assumed to be

X(0) = X0, u(t) = u0(t), ∀t ∈ [−τ,0].

In order to design a feedback controller which stabilize
the system (4), we take the following procedure.

Firstly, inspired by the reduction method in [2], [4],
we introduce an integral transformation as follows,

W (t) = X(t)+
∫ t

t−τ
P(t− s)u(s)ds, (5)

where the transformation kernel matrix P(·) : [0,τ]→
Rn×m is to be determined later. Now one can calculate
easily that

Ẇ (t) =
∫ τ

0
(Ṗ(s)−AP(s)+D(s))u(t− s)ds

+(B1 +P(0))u(t)+(B2−P(τ))u(t− τ)
+AW (t)

Choosing such a transformation kernel matrix P(·) that{
Ṗ(s)−AP(s)+D(s) = 0, s ∈ [0,τ],
P(0) =−B1,

(6)

we then get that

Ẇ (t) = AW (t)+(B2−P(τ))u(t− τ). (7)

Obviously, the solution of the Cauchy problem (6) reads

P(s) =−eAsB1−
∫ s

0
eA(s−ξ )D(ξ )dξ , ∀s ∈ [0,τ],

which combined with (7) yields

Ẇ (t) =

(
B2 + eAτ B1 +

∫ τ

0
eA(τ−s)(.s)ds

)
u(t− τ)

+AW (t). (8)

Hence the integral transformation (5) is

W (t) = X(t)−
∫ t

t−τ
eA(t−s)B1u(s)ds

−
∫ t

t−τ

∫ t−s

0
eA(t−s−ξ )D(ξ )u(s)dξ ds. (9)

For the sake of simplicity, we define the matrix B as

B = B2 + eAτ B1 +
∫ τ

0
eA(τ−s)D(s)ds, (10)

which depends on the constant time delay τ . We then
get the following linear system with lumped time-delay,

Ẇ (t) = AW (t)+Bu(t− τ). (11)

In one word, we have reduced the system (4) with
distributed input delay into the system (11) with only
the lumped input delay through the transformation (9).

Secondly, we can go a step further to rewrite the
system (11) as

Ẇ (t) = AW (t)+Bv(0, t),
vt(x, t) = vx(x, t), x ∈ (0,τ),
v(τ, t) = u(t),

(12)

where v(0, t) = u(t− τ) just gives the input in (11). In
the sequel, we discuss under the hypothesis: there exists
such a matrix K that (A+BK) is Hurwitz. It has been
proven in [1] that the orgin of the following system is
exponentially stable ,

Ẇ (t) = (A+BK)W (t)+Bϕ(0, t),
ϕt(x, t) = ϕx(x, t),
ϕ(τ, t) = 0.

(13)

Aiming to transform the system (12) into the target
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system (13), introduce the so-called backstepping trans-
formation,

ϕ(x, t) = v(x, t)−
∫ x

0
k(x,θ)v(θ , t)dθ −Q(x)TW (t). (14)

The integral kennel k(x,θ) and Q(x) is determined by
the following system,{

kx(x, t)+ kt(x, t) = 0, k(x,0) = Q(x)TB,
Q′(x) = ATQ(x), Q(0) = KT.

(15)

Please refer to [1] for the details. It is not difficult to
obtain that

k(x, t) = KeA(x−t)B, Q(x) =
(
KeAx)T

.

Thus the backstepping transformation (14) reads

ϕ(x, t) = −K
(∫ x

0
eA(x−θ)Bv(θ , t)dθ + eAxW (t)

)
+v(x, t) (16)

Noting u(t) = v(τ, t) in (12) and ϕ(τ, t) = 0 in (13), we
then set x = τ in (16) to get

u(t) = K
(

eAτW (t)+
∫ t

t−τ
eA(t−s)Bu(s)ds

)
. (17)

Hence we actually obtain the feedback control for the
original system (4),

u(t) = K
∫ t

t−τ

∫ τ

t−s
eA(t+τ−s−ξ )D(ξ )u(s)dξ ds

+K
(

eAτ X(t)+
∫ t

t−τ
eA(t−s)B2u(s)ds

)
(18)

Now we are ready to state the main result on the
stabilization for the system (4).

Theorem 1: Let K be such a matrix that A+B2K +
eAτ B1K +

∫ τ
0 eA(τ−s)D(s)Kds is Hurwitz. The linear

time-invariant system (4) with distributed input delay
can be stabilized by the feedback control u(t) given in
(18).

Proof We would like to prove that

∃c1,c2 > 0, s. t. |X(t)|+
∫ t

t−τ
|u(s)|ds≤ c1e−c2t . (19)

In the sequel, c1,c2 stand for generic positive constants,
whose values may change from line to line. In view of
the form of u(t) given in (17), let u(t) = KZ(t) with

Z(t) = eAτW (t)+
∫ t

t−τ
eA(t−s)Bu(s)ds. (20)

It is easy to check that Z(t) satisfies

Ż(t) = (A+BK)Z(t).

By the assumption on K, it is known that

|Z(t)| ≤ c1e−c2t

for some positive constants c1,c2. So we can conclude
after some simple calculations that∫ t

t−τ
|u(s)|ds≤ c1e−c2t .

Naturally, |W (t)| decays exponentially in view of (20),

which together with (9) implies |X(t)| ≤ c1e−c2t . This
completes the proof.

III. CONCLUSIONS
In this paper, we present a feedback stabilization con-

trol law for linear time-invariant systems with lumped
and distributed input delay. The system under consider-
ation in this paper is a general model for linear time-
invariant systems with delay in the control input. The
result obtained in this paper can cover the stabilization
result for linear systems with lumped input delay only
in [4].

In fact, the system (4) degenerates to the system (1)
if D(·)≡ 0. And the feedback control u(t) given in (18)
now reads

u(t) = K
(

eAτ X(t)+
∫ t

t−τ
eA(t−s)B2u(s)ds

)
, (21)

which seems to differ by a factor eAτ from (3) derived
in [4]. If examining (20), we then find out that (20)
is a new transformation which reduce the time-delayed
system (11) into the delay-free system

Ż(t) = AZ(t)+Bu(t).

This transformation differs also by a factor eAτ from
the reduction transformation (2), which coincides with
the difference between (21) and (3). This relation was
discovered too in [7] through discussing the relations be-
tween continuous reduction transformation and discrete
one.
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