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Abstract : In this paper, we show an uncertain model of a two link RR manipulator with uncertainties in the
two rotation angles of each joint, and show the extended system with uncertainty also in an output matrix. For
this system, we apply a guaranteed cost control method based on a linear upper bound. Parameter tuning of
γi in the linear upper bound is effective to design a feedback gain which have appropriate characteristics. In
the numerical simulation, we show an advantage that the state observer is effective to reduce the influence of
signal noise in state vector.
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1 Introduction

The guaranteed cost control (GCC) is one of an effective
approach to design a robust control system. This method
is an extended version of the linear quadratic regulator
(LQR) that is one of the efficient method for designing
control system, and it is stated as an essential concept in
the modern control theorem. However, LQR method is
formulated as nominal form, thus, it is weak for the effect
of the disturbance which is caused by the uncertainty of
the system model, secular distortion, signal noise, ans so
on. The system performance is degraded by these distur-
bance effects.

For such a problem, under the assumption that an un-
certain parameter variation is in an admissible closed set,
the GCC method guarantees the upper bound of the per-
formance index variation [1]. Takahashi et al. extended
the GCC method to the case with uncertainty in an out-
put matrix [2], and they proposed the modeling method
for the uncertain inverted pendulum car system which in-
clude uncertainty in a pendulum angle and apply the guar-
anteed cost control method [3]. In this paper, we will pro-
pose a method of the GCC to the system with structured
uncertainties in input, state and also output matrix. And
show the effectiveness of the parameter tuning in the up-
per bound. At last, we will apply the state observer to
consider the influence of disturbance.

2 Formulation of the GCC problem

In this section, we will show the GCC problem with pa-
rameter variation in state, input and also output matrix.

Let us consider the following uncertain system.

{
ẋ(t) = A(ξ)x(t) +B(ζ)u(t)
y(t) = C(ψ)x(t) (1)

where, state, output and input vector are x ∈ �n,y ∈
�m and u ∈ �l, respectively. Uncertain state matrix
A(ξ) ∈ �n×n, input matrix B(ζ) ∈ �n×l, and output
matrix C(ψ) ∈ �m×n are defined as

A(ξ) = A0 +
p∑

i=1

ξiAi, |ξi| ≤ 1 (2)

B(ζ) = B0 +
q∑

j=1

ζjBj , |ζj | ≤ 1 (3)

C(ψ) = C0 +
r∑

k=1

ψkCk, |ψk| ≤ 1 (4)

where, A0, B0 and C0 represent the system structure that
could be included in the linear system model. We call
these matrices as nominal element. Ai, Bj and Ck repre-
sent the uncertain system structure that could not be in-
cluded in the linear system model. We call these matrices
as uncertainties. Where p, q and r are numbers of the cor-
responding uncertainties, ξi, ζj and ψk are indeterminate
scalar parameters which represent the scale of uncertain-
ties and included a bounded closed set. These parameters
are used to normalize the structures of uncertainties.

Here we consider the GCC problem for the system of
eq. (1) which has uncertainty in an output matrix. The per-
formance index function consists of the quadratic forms of
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the input vector u(t) and the output vector y(t).

J(y,u, ξ, ζ, ψ)

=
∫ ∞

0

{
yT(t)Qy(t) + uT(t)Ru(t)

}
dt (5)

where Q ∈ �m×m ≥ 0 and R ∈ �l×l > 0 are weighting
matrices of input and output vector, respectively. In virtue
of the uncertain structure (2), (3) and (4), the linear upper
bound becomes:

UL(A(ξ), B(ζ), C(ψ), P,Q,R)

=
p∑

i=1

(
γ−1

i P + γiA
T
i PAi

)
+ PRsP +Qs (6)

where

Rs =
q∑

j=1

(BjR
−1BT

0 +B0R
−1BT

j ) (7)

Qs =
r∑

k=1

(CT
0QCk + CT

kQC0 + CT
kQCk) (8)

By applying this upper bound, we have stochastic alge-
braic Riccati equation (SARE) based on the linear upper
bound:

(A0 + γI)TP + P (A0 + γI) + CT
0QC0 +Qs

−P (Rn −Rs)P +
p∑

i=1

γiA
T
i PAi = O (9)

where γ = 1/2
∑p

i=1 γ
−1
i , Rn = B0R

−1BT
0 . Feedback

gain is obtained as:

F = −R−1BT
0P

3 Skeletal form of the uncertain model

From the past research [4], we have a dynamics of uncer-
tain LTI system of a two link RR manipulator. The link
1 is connected to the base with a rotation joint 1 and the
link 2 is connected to another end point of the link 1 with
a rotation joint 2. Each joints and arms have physical pa-
rameters illustrated in table 1.

Table 1 : Parameters of the Manipulator
Parameters Meaning [unit]

θi Angle of the joint [rad]
mi Mass of the arm [kg]
Ii Inertia moment of the arm [kg · m2]
li Length of the arm [m]
lGi Distance from the joint to the center

of gravity of the arm [m]
g Gravity [m/s2]
τi Input torque to the joint [N· m]

Let us define a state vector x(t) and an input vector u(t)
are

x(t) =

⎡
⎢⎢⎣
θ1(t)
θ̇1(t)
θ2(t)
θ̇2(t)

⎤
⎥⎥⎦ ,u(t) =

[
u1(t)
u2(t)

]

An input matrix A(ξ) and an output matrix B(ζ) are ob-
tained as following:

A(ξ) =

⎡
⎢⎢⎣

0 1 0 0
h̄11/hD 0 h̄12/hD 0

0 0 0 1
h̄21/hD 0 h̄22/hD 0

⎤
⎥⎥⎦

B(ζ) =

⎡
⎢⎢⎣

0 0
h22/hD −h12/hD

0 0
−h12/hD h22/hD

⎤
⎥⎥⎦

where
hD = h11h22 − h2

12

h̄11 = ∆c1g(h22(m1lG1 +m2l1)
+∆c2m2lG2(h22 − h12))

h̄12 = ∆c1∆c2m2glG2(h22 − h12)

h̄21 = ∆c1(−h12g(m1lG1 +m2l1)
+∆c2m2glG2(h11 − h12))

h̄22 = ∆c1∆c2m2glG2(h11 − h12)

h11, h12 and h22 are given as follows:

h11 = I1 +m1l
2
G1

+ I2 +m2(l21 + l2G2 + 2∆c2l1lG2)
h12 = I2 +m2(l2G2 +∆c2l1lG2)
h22 = I2 +m2l

2
G2

From A(ξ) and B(ζ), we can obtain deterministic ele-
ments A0 and B0 as (∆θ1, ∆θ2) = (0, 0). A1 and B1 are
obtained in the condition of (∆θ1, ∆θ2) = (max1, 0) and
A2 and B2 are obtained in the condition of (∆θ1, ∆θ2) =
(0,max2). Wheremaxi is a maximum uncertainty of the
rotational angle in the joint i.

4 State observer

In this section, we consider the application of an identi-
cal state observer to the uncertain system (1). x̂(t) is the
state of the observer (estimation of the plant state), y(t)
is output from the plant, and u(t) is the input from the
controller to the plant, respectively.

˙̂x(t) = (A−KC)x̂(t) +Gy(t) +Hu(t)

where,K is observer gain.
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5 Numerical example

5.1 Uncertain system

In this section, we will show the numerical example. Here
we consider that the joint 2 is passive, thus the input matrix
B(ζ) becomes

B(ζ) =

⎡
⎢⎢⎣

0
h22/hD

0
−h12/hD

⎤
⎥⎥⎦

The values of the physical parameters are illustrated as in
table 2.

Table 2: Parameters
Parameter Value Parameter Value

m1 1 m2 1
I1 0.03 I2 0.03
l1 0.3 l2 0.3
lG1 0.15 lG2 0.15
g 9.8

For the above parameters, we have uncertain system as
follows:

A0 =

⎡
⎢⎢⎣

0.0000 1.0000 0.0000 0.0000
30.3093 0.0000 −12.1237 0.0000
0.0000 0.0000 0.000 1.0000

−28.2887 0.0000 50.5155 0.000

⎤
⎥⎥⎦

B0 =

⎡
⎢⎢⎣

0.0000
9.6220
0.0000

−17.8694

⎤
⎥⎥⎦

For the disturbance∆θ1 = ∆θ2 = 0.08, uncertain system
becomes:

A1 =

⎡
⎢⎢⎣

0.0000 0.0000 0.0000 0.0000
−0.0969 0.0000 0.0388 0.0000

0.0000 0.0000 0.0000 0.0000
0.0905 0.0000 −0.1616 0.0000

⎤
⎥⎥⎦

A2 =

⎡
⎢⎢⎣

0.0000 0.0000 0.0000 0.0000
0.0056 0.0000 0.1059 0.0000
0.0000 0.0000 0.0000 0.0000

−0.0168 0.0000 −0.3192 0.0000

⎤
⎥⎥⎦

B1 =

⎡
⎢⎢⎣

0.0000
0.0000
0.0000
0.0000

⎤
⎥⎥⎦ , B2 =

⎡
⎢⎢⎣

0.0000
−0.0228

0.0000
0.0686

⎤
⎥⎥⎦

5.2 Parameter Tuning γi of the linear upper bound

In this paper, we use the linear upper bound for the SARE.
In the past research [2], we had shown that the effective of

the parameter tuning of γi in the linear upper bound to de-
sign a system which have an appropriate characteristic of
closed loop system, in the case of the system have only
one uncertainty. Here we show the result with two uncer-
tainties of Ai where p = 2.
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Figure 1 : Degradation of the Performance Index

At first, we solve the SARE on the any point of γ1

and γ2 in 0.1 ≤ γi ≤ 10000 (i = 1, 2), and cal-
culate the performance index as JLQR = xT

0PLQRx0

and JGCC = xT
0PGCCx0. The weighting matrices are

Q = diag(1, 1) and R = 1. From these results, we exam-
ine the ratio of the degradation of the performance index.
This result is illustrated in the figure 1 by double loga-
rithm 3D-chart, which x- and y-axis are logarithmic and
z-axis is plotted with a linear scale. In figure 1, the sur-
face illustrates the degradation ratio of the performance
index between GCC and LQR. The contour line on the z-
plane denotes a line of JLQR and JGCC are equal. The
minimum value takes JGCC/JLQR = 0.6568 at a point
(γ1, γ2) = (46.8750, 15.6250). This point is surrounded
by the square contour line that the corner is round. Inside
of this square, the GCC method provides a good result.
But in the outside region, a reversed result is provided.
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Figure 2 : Norm of FGCC

Next, we will show the comparison of the norm of feed-
back gain in the same region. In figure 2, the contour line
on the z-plane denotes a results of the LQR method that
FLQR = 68.8696. The minimum value of the norm of
feedback gain is norm(FGCC) = 55.2322 on the same
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minimum point of figure 1. These results have a similar
tendency.

5.3 Numerical solution of SRAE

Here we show and compare the results of GCC and LQR.
The following results is the solution of the SARE (Propsed
method) on the minimum point (γ1, γ2).

PGCC =

⎡
⎢⎢⎣

214.9665 54.3720 163.5782 31.4218
54.3720 13.7897 41.6448 7.9989

163.5782 41.6448 128.8797 24.5399
31.4218 7.9989 24.5399 4.6930

⎤
⎥⎥⎦

Feedback gain is

FGCC = [ −38.3216 − 10.2522 − 37.8073 − 6.8958 ]

Eigenvalues of the closed loop system are:

( −7.8958± 2.3148i,−4.3929± 0.5460i )

The LQR result (Ordinary method) is follows.

PLQR =

⎡
⎢⎢⎣

309.6216 80.0140 250.8530 45.7467
80.0140 20.8360 65.4442 11.9295

250.8530 65.4442 210.2729 37.8890
45.7467 11.9295 37.8890 6.9139

⎤
⎥⎥⎦

Feedback gain is

FLQR = [ −47.5721 − 12.6897 − 47.3509 − 8.7623 ]

Eigenvalues of the closed loop system are:

( −23.0041 − 4.3278± 0.7210i − 2.8177 )

5.4 Comparison of the numerical simulation

Here we will show the numerical simulation of uncertain
systems. Now, we compare the performance index func-
tion value of eq. (5) with the difference of system com-
position i) with/without observer, ii) with/without distur-
bance. The simulation is calculated by Euler’s method
with step time is 0.01, time interval (0, 30) with an ini-
tial state value is x(0) = [ 1 0 1 0 ]T and initial observer
state value is ẑ(0) = [ 0.1 0 0.1 0 ]T. The disturbance
is added in the state vector (x2, x4) = (θ̇1, θ̇2) as a signal
noise of uniformly random number between (−0.08, 0.08)
on every step time.

Table 3: Comparison of the degradation
No Noise with Noise Degradation [%]

LQR1 1108.2367 1214.8047 1.0962
GCC1 1203.4899 1317.1795 1.0945
LQR2 1916.9598 2621.1953 1.3674
GCC2 2866.6822 3257.1295 1.1362

In table1, LQR1 and GCC1 are the result without ob-
server. LQR2 and GCC2 are the result with observer. It
express the GCC have high performance value index but
have more robustness than the LQR method. In the case
with observer, this tendency becomes more remarkable.

6 Conclusion

For the system which haves two uncertainties, we showed
the advantage of the state observer for the influence of dis-
turbance and parameter tuning of linear upper bound.
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