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Abstract: In this paper, we considered swing-up and LQR stabilization of rotary inverted pendulum. A DC motor 

rotates a rigid arm. At the end of the rigid arm, joint is attached and a pendulum is suspended. Two encoders check the 

degree of the rigid arm and pendulum every 0.5ms. This paper proposes a modified bang-bang control which swings up 

a pendulum fast and safe. In order to solve the stabilization problem, this paper used linear quadratic regulator. When 

the user gives a large disturbance to the pendulum and when the pendulum loses its position, the pendulum quickly 

recovers to upright position. Experimental results showed that the proposed bang-bang controller and LQR controller 

can stabilize a rotary inverted pendulum system within 3.0s for any starting point. The system also showed robustness 

from large disturbance. 
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I. INTRODUCTION 

Inverted pendulum has been a great test bed for 

decades to deal with the control problems. Inverted 

pendulum has nonlinear characteristics and are not 

difficult to analyze systems near the equilibrium point. 

For these reasons, a lot of researchers used this tool to 

verify their ideas. 

Furuta proposed rotary inverted pendulum which 

has a direct-drive motor as its actuator source and a 

pendulum attached to the rotating shaft of the motor [1].  

Yoshida proposed an energy-based swing-up control 

and Å ström showed that swinging up a pendulum by 

energy control is very effective and if acceleration of the 

pivot is sufficiently large, the pendulum can reach 

upright position in one swing [2], [3]. 

In recent years, a lot of control theories have been 

applied to control inverted pendulum such as fuzzy 

control [4], adaptive PID control [5], iterative impulsive 

control [6], neural network control, sliding mode control 

and other various control methods. 

Most papers concentrated on how to swing-up the 

pendulum and how to stabilize it to upright position. In 

this paper, we will also deal with situations after the 

pendulum was stabilized. The user applied large 

disturbance to a stabilized pendulum which pushed the 

pendulum to an unstable position. Once the pendulum 

lost its position, the controller returns it back to stable 

position quickly. We adjusted the parameters of LQR 

controller by simulations and experiments. 

This paper is organized as follows. In section II, 

design and kinematics of rotary inverted pendulum by 

[1] will be introduced. Section III, IV discusses swing-

up strategy and LQR controller. Controllers are 

switched properly by control laws. Experimental results 

are shown section V. Conclusions are in the last section. 

II. ROTARY INVERTED PENDULUM 

 
Fig. 1. Sketch of the rotary inverted pendulum 

 

The above figure shows a sketch of the rotary 

inverted pendulum [1]. To use the Euler-Lagrange 

dynamic equation, 
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we need to get the kinetic and potential energy. 

Assuming that mass of the rotating arm is M and the 

mass of pendulum is m. The kinetic energy of this 

system is 
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A rotating arm’s potential energy is zero, so the net 

potential energy of system is 

 cos
2
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L
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Putting (2) and (3) to Euler-Lagrange equation (1), 

we can get two equations of motion. 
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The table below shows a specification of SRV02 

with ROTPEN. 

 

Table 1. Specification of inverted pendulum 

Parameter Definition Value Units 

r Rotating arm length 20 cm 

L Pendulum length 35 cm 

m Pendulum mass 0.128 kg 

M Rotating arm mass 0.278 kg 

   

III. SWING-UP STRATEGY 

Swing-up strategy is giving 90% of maximum 

torque to the opposite direction of pendulum speed 

when the pendulum heads near the ground. It is a very 

simple strategy and it works if motor’s torque is enough. 

However, if a pendulum being pushed by a user lost 

its position, it could revolve very fast. If a pendulum’s 

speed is high, then swing-up control laws gives 

acceleration to the pendulum. When acceleration and 

speed are increased, LQR controller couldn’t hold it 

anymore. This can makes the pendulum rotates all the 

time and it may cause malfunction of a motor. 

To prevent this problem, we need to modify the 

control laws. We introduce the weighting factor 

, which decides the working range of swing-up 

controller. Because encoders give  and   every 

0.005sec, we can get pendulum’s speed easily.   

decreases when the pendulum’s speed is high and vice 

versa. A motor operates if  located between 

210 150    degrees, and   changes according 

to the speed of the pendulum. Output torque is 90% of 

maximum torque multiplied by .  By trial and error, 

if  is faster than 900(deg/ sec) , the pendulum 

revolves. Therefore we determined  as follows.  
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Modified control law slowly shuts down the motor 

when the pendulum’s speed is too high. It also operates 

the motor in the opposite direction when is extremely 

high. Overall, this controller is same as the bang-bang 

controller when  is in the normal range. 

If you change the working range of swing-up 

controller, should be reconsidered. 

IV. LQR STABILIZATION 

When the swing-up controller brings the pendulum 

to the range between -30 degrees and 30 degrees, the 

LQR controller will operate. We can linearize (4) near 

the equilibrium point ( 0  ). For convenience, we set 

the auxiliary variables as shown in the equations below. 
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By (6), we make the state-space representation: 
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After digitizing (7) with 2 kHz, the system changes 

to  

 ( 1) ( ) ( )x k x k u k    (8) 

 

The system (7) is unstable but controllable. 

Therefore by using linear quadratic regulator, we can 

make it stable. LQR minimize the object function 
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and its control law is 
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where 
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We want to settle  and   as fast as possible. Q2 

is just 1 and Q1 is 
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which emphasize  and  . After calculate (10) and 

(11), we can finally get K
. 

   

V. EXPERIMENTAL RESULTS 

Controllers discussed in section 3 and 4 are used for 

these experiments. We used SRV02 with ROTPEN. 

 

1. Swing-up and small disturbance 

At the start, the pendulum is located at -180 degree. 

After the pendulum is stabilized, the user push it to the 

left and to the right. This changes alpha by almost 20 

degrees but not enough to make the pendulum fall down. 

 
Fig. 2(a). Angle of a pendulum 

 

 
Fig. 2(b). Angle of rotating arm 

 

Fig. 2(a) and Fig. 2(b) show the first experiment 

result. A pendulum swung to upright position in 2 

seconds. Between 10 ~ 14 seconds, the user applied 

disturbance to the left and right. The pendulum head 

was moved about 20 degrees and the rotating arm was 

moved more than 100 degrees but the controller was 

able to recover their position quickly. This shows that 

both controllers work correctly. 

 

2. Large disturbance 

This time, the user will apply a large disturbance 

which can make the pendulum fall down to the bottom. 

We will show that the controller is still able to move it 

back to upright position.  

 
Fig. 3(a). Angle of a pendulum 

 

 
Fig. 3(b). Angle of a rotating arm 

 

Fig. 3(a) and Fig. 3(b) shows the second experiment 

result. In the figures, 0 and 360 degrees represent same 

angle. Between 2 and 3 seconds, the pendulum fell 

down but recovered to the upright position right away. 

Between 4 and 5 seconds, user applied disturbance to 

the opposite direction and it still operated. 

 

VI. CONCLUSION 

In this paper, the modified bang-bang controller and 

LQR controller worked successfully. The pendulum 

showed convergence and achieved robustness from the 

large disturbance. Swing-up time was less than 3.0s and 

the whole recovery process worked immediately. 
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