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Abstract: Virtual Slope Walking is a new realization of powered walking based on Passive Dynamic Walking, which is 
not only effective in generating fast walking, but also achieving advantages on disturbance rejection. Under the open-
loop condition without external sensing device，the step-handling walking with maximum step height of 10% leg 
length is realized on a planar bipedal robot Stepper-2D. This paper theoretically studies the disturbance rejection of 
Virtual Slope Walking by introducing the ground step perturbation. We theoretically proved that the step perturbation 
can be transformed to the disturbance of initial system state and successful step handling walking comes from the 
system’s cyclic stability. The necessary and sufficient condition of recovering from the step perturbation is obtained and 
confirmed by the experiment on Stepper-2D. 
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I. INTRODUCTION 

McGeer [1] demonstrated that a Passive Dynamic 
Walker can walk down a shadow slope with no control 
and actuation in the early of 1990. Then the concept of 
Passive Dynamic Walking has been used as a starting 
point for designing powered walkers to walk on level 
ground. Wisse[3], Hobbelen[4] and Collins[5]. 
demonstrated several realizations of powered walking 
based on kinematic energy complement. Asano [6], 
Honjo [7] and Harata [8] introduced the parametric 
excitation for potential energy restoration. In our 
previous work [9] [10], we proposed Virtual Slope 
Walking by introducing the leg length modulation and 
achieved a relative speed of 4.48leg/s on a planar 
bipedal robot Stepper-2D. 

Disturbance rejection, defined as the ability to deal 
with unexpected disturbances [11], is considered as one 
of the fundamental performances for bipedal walking. 
There exists several ways to measure the disturbance 
rejection for a PDW based walker theoretically, such as 
Floquet multipliers, Basin of Attraction and the Gait 
Sensitivity Norm. But the most commonly used 
experimental measure is the ground step perturbation 
that a walker can handle without falling. Wisse[12] 
realized powered walking under a step height of 2% leg 
length disturbance. Pratt [13] realized powered walking 
under a step height of 9% leg length. Geng [14] 
achieved powered walking under a step height of 4% 
leg length by on-line machine learning and PDW based 
mechanism designed. We[15][16] have realized a 
powered walking under a step height of 10% leg length 
on Stepper-2D based on Virtual Slope Walking.  

In this paper, we theoretically study the 
disturbance rejection of Virtual Slope Walking and 
present its stabilizing mechanism under. Based on the 
asymptotic expression of stride function and the fixed 
point, we theoretically proved that ground step 
perturbation can be transformed to the disturbance of 
initial system state and the successful step handling 

walking comes from the fixed point’s stability. Then the 
necessary and sufficient condition of recovering from 
the step perturbation is presented based on the analysis 
of the relationship between the system state and the 
minimum initial state in the transition phase, providing 
the possibility to quantitatively analyze the maximal 
relative step height. 

The remainder of this paper is organized as follows. 
In Section Ⅱ, the model of Virtual Slope Walking is 
presented. In Section Ⅲ, the ground step disturbance 
handling is illustrated, and the performance of 
disturbance rejection is analyzed in Section Ⅳ. Section 
Ⅴ presents the experimental results and Section Ⅵ the 
conclusion and future work. 

II. Model of Virtual Slope Walking 

1 Model Description 
A cartoon of the Virtual Slope Walking model is 

shown in Fig. 1. We assumed that the model has two 
telescopic massless legs and a point mass body at the 
hip. The stance leg is actuated for extending from rs to re 

following a smooth leg length trajectory r(t), the swing 
leg is actuated for shortening from re to rs in one step. 
The length shorten ratio is then defined as =rs/re. Since 
the swing leg is assumed massless, it can be swung 
arbitrarily quickly to the position with constant inter-leg 
angle φ0 before heel strike. The impact of the swing leg 
with the ground is assumed to be fully inelastic (no slip, 
no bounce) and instantaneous, which implies that there 
exists discontinues change in the velocity of the center 
of mass and unchanged system configuration. 

 
Fig. 1 Model of Virtual Slope Walking 
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We define a walking step starts when the new 
stance leg (lighter line) has just made contact with the 
ground in the upper left picture, namely instant I. The 
stance leg swings to the position at θ=θII in the upper 
right picture for the beginning of extension, namely 
instant II. And the stance leg extension ends at θ=θIII in 
the bottom left picture, namely instant III. The swing 
leg (heavier line) is shortened and swings to the position 
with constant inter-leg angle φ0 just before heel strike in 
the bottom middle picture, and hits the ground in the 
bottom right picture, namely instant IV. Then, the stance 
leg and swing leg exchange subsequently, and the 
walking cycle repeats continuously. 

2 Governing Equations 
The governing equations of the system consist of 

nonlinear differential equations for the swing phase and 
algebraic equations for the transitions of heel strike. 

(1) Swing phase from I to II: Using Lagrangian 
Equations, the second-order differential equation of 
motion is given below for the swing phase of the stance 
leg with the constant length rs under the dimensionless 

time variable
eg r t   

1
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
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        (1) 

For the simplicity, we will refer to dimensionless time τ 
as the time variable, henceforward. 

(2) Stance leg extension From II to III: The stance 
leg acts as an inverted pendulum with variable length 
r(τ). Using the Lagrangian Equations, the equation of 
motion can be written as 
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where F is the force that the leg exert on the center of 
mass during the stance leg extension. 

(3) Swing phase from III to IV: Similar to the 
equation in Eq. (1), the equation of motion for the 
stance leg with the constant length re can be written as 

 ( ) sin ( )   


               (3) 

(4) Heelstrike transition from IV to I of the 
subsequent step: The heelstrike from step n to the 
subsequent step n+1 occurs when the geometric 
collision condition 

I 0 IV

I IV

( 1) ( ( ))

cos ( 1) cos ( )

n n

n n

  
  
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      (4) 

is met, where the ‘I’ and ‘IV’ subscripts denote the 
instant I and IV respectively, φ0 is the constant of the 
inter-leg angle at heels trike. Eq. (4) also reflects a 
change of names for the two legs. The swing leg 
becomes the stance leg, and vice versa. 

From the conservation of angular momentum about 
the swing foot contact point at heel strike, we obtain the 
following transition equation 

0
I IV

cos
( 1) ( )n n

 


            (5) 

Eq. (1)-(5) construct the dynamic equations of this 
hybrid system. 

3 Stride Function and Fixed Point 
The general procedure for the study of this model 

is based on interpreting a step as a Poincaré map, or, as 
McGeer termed it, a ‘stride function’ [1]. Our Poincaré 
section is at the start of a step, namely instant I in Fig. 1. 
Given the state of the system at instant I, the Poincaré 
map f determines the state just after the next heelstrike. 
Note that in the geometric collision condition Eq. (4), 
the stance leg angle θI is constant with inter-leg angle φ0 

0
I

0

cos
arctan

sin

 



            (6) 

So the heels trike transition reduces this problem in 2D 
state space {θI, ωI} to a one dimensional map f, only 
consisting of angular velocity ωI. So, while the system 
has only one independent initial condition, we need to 
specify ωI at the start of walking step n to fully 
determine the subsequent motion at steps n+1, n+2,… 
so that ωI(n+1) can be obtained from ωI(n) by the 
Poincaré mapping. We have proved that under the 
Equivalent Definition, The Trajectory Leg Extension 
(TLE) can be equivalently transformed to the 
Instantaneous Leg Extension (ILE) [15] in Virtual Slope 
Walking. Consequently, defining a new variable q=ω2

I 

as the system state, the stride function f can be 
analytically obtained under the Instantaneous Leg 
Extension (ILE) as follows 

2 2
0

2 *
0 2

( ) cos

1 1
2 cos [cos ( ) cos ( )]

q q 
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 



   II I

f
 (7) 

where θ*
II is the equivalent extension angle. Since the 

walking with TLE and its equivalent ILE produces the 
equivalent cyclic walking motion, ILE can be used as a 
theoretical tool for the analysis of Virtual Slope Walking 
without the dependence on numerical simulation. 

The fixed point of the stride function is defined as 
f(qf) = qf. From Eq. (7), the fixed point can then be 
obtained as follows 

2 * 3 3
0

2 2 2
0

2cos [cos (1 ) cos ( )]

(1 cos )
II Ifq

     
  

  



 (8) 

III. Ground Step Disturbance Handling 

1. Transition Walking 
After entering into the periodic state in Virtual 

Slope Walking, once the system is perturbed by a single 
step, there will be a transition phase in the subsequent 
one or two walking steps. And after that, the system 
state will approach the fixed point asymptotically the 
same as the condition of initial state’s disturbance in 
Virtual Slope Walking. We will illustrate such transition 
walking by introducing the single step-up and step-up-
down perturbations in the following section. 
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2. Single Step-Up Perturbation 
We assume that the system is in the periodic state 

in step n-2, and a single step-up perturbation occurs at 
the end of step n-1, just at heel strike. The subsequent 
transition walking step n is shown in Fig. 2. In the 
transition phase, there exist the perturbations not only 
on the system state q, but also on the stance leg angle θI 
and θIV, which is constant in normal walking, resulting in 
the variation of the stride function. After the transition 
phase ends, only disturbance on the system state q exists. 

1n  n

IV
n

1n 

I
n

2n 

I
f

IV
f

I
f

I
f

IV
f IV

f

h

 
Fig. 2 Transition Walking of the Single Step-Up Perturbation 

Let h be the step disturbance height, and hr=h/re be 
the relative value. Then, the perturbation on the stance 
leg angle θI and θIV resulted from the step height 
disturbance in the transition walking step n can be 
obtained as follows 

IV I 0

IV Icos cos

n n

n n
rh

  

  

  


 

         (9) 

The system state at the start of step n can be considered 
as the output of the stride function with perturbed θIV of 
step n-1. Let θf

I and θf
IV be the constant stance leg angle 

which is corresponded to the fixed point, then q(n) can 
be represented as 

2 2
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0 II IV I2 2
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2cos [cos ( ) ( cos cos )]
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There exists the perturbation on θI in transition walking 
step n (Fig. 2), so q(n+1) can be considered as the 
output of the stride function with perturbed θI of step n 
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θI and θIV returns to the constant value from step n+1, 
then q(n+2) can be represented as 

2 2
0
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0 II I2

( 2) cos ( 1)

1 1
2cos [cos ( ) cos ( )]f
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The transition phase ends after step n, and the system 
state starts approaching the fixed point asymptotically 
with the initial state of q(n+1). 

It can be concluded from Eq. (10)&(11) that the 
single step-up perturbation introduces the disturbance 
on the system state q of step n and transfers such 
disturbance by the stride function in the subsequent 
transition phase. It is indicated from Eq. (12) that after 
the transition phase ends, the step perturbation can be 
totally transformed to the disturbance of initial system 
state. So, once the continuous walking condition of the 
initial state is satisfied, the system state will definitely 
approach the fixed point in the following walking steps. 

3. Single Step-Up-Down Perturbation 
We assume that the system is in the periodic state 

in step n-2, and a single step-up-down perturbation 
occurs at the end of step n-1, just at heel strike. The 
subsequent transition walking steps n and n+1 are 
shown in Fig. 3. The same as the step-up perturbation, 
in the transition phase, there exist the perturbations not 
only on the system state q, but also on the stance leg 
angle θI and θIV, which is constant in normal walking, 
resulting in the variation of the stride function. After the 
transition phase ends, only disturbance on the system 
state q exists.  

1n  n 1n  2n 

1
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I
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1
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2n 
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f
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f

IV
f

IV
f

h

Fig. 3 Transition Walking of the Single Step-Up-Down 
Perturbation 

The perturbation on the stance leg angle θI and θIV 
resulted from the step height disturbance in the 
transition walking step n and n+1 can be obtained as 
follows 

1 1
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IV I IV I

,
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The system state at the start of step n can be considered 
as the output of the stride function with perturbed θIV of 
step n-1. So q(n) can be represented as 

2 2
0
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Both perturbations on θI and θIV exist in transition 
walking step n (Fig. 5), so q(n+1) can be considered as 
the output of the stride function with perturbed θI of step 
n and θIV of step n+1 
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There exists the perturbation on θI in transition walking 
step n+1 (Fig. 3), so q(n+2) can be considered as the 
output of the stride function with perturbed θI of step 
n+1 
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θI and θIV returns to the constant value from step n+2, 
then q(n+3) can be represented as 

2 2
0
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( 3) cos ( 2)
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The transition phase ends after step n+1, and the system 
state starts approaching the fixed point asymptotically 
with the initial state of q(n+2). 

It can be concluded from Eq. (14)-(16) that the single 
step-up-down perturbation introduces the same 
disturbance as that of the single step-up perturbation. It 
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is indicated from Eq. (17) that after the transition phase 
ends, the step perturbation can be totally transformed to 
the disturbance of initial system state. The only 
difference is that the transition phase of single step-up-
down perturbation includes one more step than that of 
single step-up perturbation. So, once the continuous 
walking condition of the initial state is satisfied, the 
system state will also definitely approach the fixed point 
in the following walking steps. 

So we can draw the conclusion from the above results 
that the step height perturbation can be totally 
transformed to the disturbance of initial system state, 
and the disturbance rejection problem in Virtual Slope 
Walking can be transformed to the stabilizing problem 
of the fixed point if the continuous walking condition is 
satisfied. 

Ⅳ Analysis of Disturbance Rejection of 
Virtual Slope Walking 

1. Maximum Relative Step Height 
There exists the maximum relative step height hr

max 
when q(n)=qz(n) holds as hr increases, which describes 
the performance of disturbance rejection of Virtual 
Slope Walking. Therefore, hr

max can be obtained as 
follows 

max 2
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where hr
max and θI
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        (19) 

It can be concluded from Eq. (18)&(19) that the 
maximum relative step height hr

max is determined by the 
model parameters length shorten ratio β, equivalent 
extension angle θ*

II and inter-leg angle φ0. We will 
illustrate the influence of model parameters on the 
disturbance rejection in the following section. 

2. Influence of Model Parameters  

2.1 Effect of the Length Shorten Ratio β 
The maximum relative step height hrmax is shown as 

a function of β in Fig.4 with four values of φ0. It is 
indicated from Fig.4 that hrmax decreases with an 
increase in β. An increase in β causes a net decrease in 
the extended leg length, resulting in a decrease in the 
complementary energy Ec and a decrease in the system 
kinematic energy which is represented by the system 
state q. On the other side, an increase in β causes an 
increase in qz. Consequently, hrmax decreases from 
combined action with the effect of changing in q(n) and 
qz(n). 

The main conclusion from this graph is that a decrea
se in β leads to a greater hr

max and a larger disturban
ce rejection in Virtual Slope Walking. However, β is a

lways restricted by the physical parameters of the real ro
bot. 
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Fig. 4 Trajectory of maximum relative step height hr

max 
versus length shorten ratio β 

2.2 Effect of the Equivalent Extension Angle θ*
II 

The maximum relative step height hr
max is shown 

as a function of θ*
II in Fig. 5 with two values of β and φ0 

respectively. Fig. 5 shows a second order relationship 
between hr

max and θ*
II. As θ*

II approaching zero from 
both side, hr

max increases and reaches a maximum value 
at θ*

II =0o. The vertical projection of leg length 
extension increases as θ*

II approaching zero, and more 
potential energy is complemented. As a consequence, 
q(n) and hr

max increase while qz(n) stays constant. The 
vertical projection of leg length extension reaches its 
maximum at θ*

II =0o. 
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Fig. 5 Trajectory of maximum relative step height hr

max versus 
equivalent extension angle θ*

II  

It can be concluded from this graph that extending 
the stance leg more close to mid-stance will result in 
a greater hr

max and a larger disturbance rejection in 
Virtual Slope Walking. We can extend this conclusion 
to the Trajectory Leg Extension (TLE) that the 
extension phase being close to mid-stance also produces 
larger disturbance rejection. 
2.3 Effect of the Inter-leg Angle φ0 

The maximum relative step height hr
max is shown as a 

function of φ0 in Fig. 6 with four values of β. As shown 
in Fig. 6, hr

max decreases with an increase in φ0. The 
dissipation energy Er increases as φ0 increases. As a 
consequence, the system kinematic energy decreases, 
and q(n) decreases. On the other side, an increase in φ0 
causes an increase in qz. Consequently, hr

max decreases 
from combined action with the effect of changing in 
q(n) and qz(n). 
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Fig. 6 Trajectory of maximal relative step height hrmax versus 

inter-leg angle φ0 
So we can conclude from this graph that a smaller 

φ0 results in greater hr
max and a larger disturbance 

rejection in Virtual Slope Walking.  

2.4 Adjoint Relationship between the Walking Speed and 

Disturbance Rejection 
The walking speed described by the Froude Number 

Fr is also determined by the model parameters β, θ*
II, 

and φ0 [16]. Therefore, as the model parameters change, 
there exists an adjoint relationship between the walking 
speed and disturbance rejection. The maximum relative 
step height hr

max is shown as a function of Fr in Fig. 7. 
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Fig. 7 Trajectory of maximal relative step height hrmax versus 

walking speed Fr 
It is indicated from Fig. 7 that hr

max increases with an 
increase in Fr. Since the effect of model parameters on 
hr

max is the same as that on Fr, this conclusion exists 
distinctly. Such conclusion suggests that achieving fast 
walking speed always accompanying with large 
disturbance rejection. 

From the above analyze results, it can be 
concluded that the performance of disturbance rejection 
in Virtual Slope Walking can be determined by the 
model parameters β, θ*

II, and φ0, which will be 

confirmed in the following experiment results. 

Ⅴ. Experiment 

1. Planar Bipedal Robot Stepper-2D 
We use the planar bipedal robot Stepper-2D as a 

test bed of disturbance rejection in Virtual Slope 
Walking under single step perturbation. As shown in Fig. 
8, Stepper-2D is mounted on a boom to constrain the 
body motion in the sagittal plane. The boom has three 
orthogonal DOF and the length is six times more than 
the height of the robot, so its effect on the robot sagittal 
movement can be ignored. Stepper-2D’s leg length is 
250mm and hip mass is 390g. 

 
Fig. 8 Planar Bipedal Robot Stepper-2D with Point Foot. 
The leg with the point foot is actuated in the hip and 

knee joint by digital servo motors. The telescopic leg 
motion is realized by bending and unbending the knee 
joint. And the swing leg motion is achieved by hip 
motor actuation [15]. All digital servo motors are 
controlled by a computer through serial bus. 

2. Experimental Results 
Stepper-2D successfully recovers from a maximum 

single step perturbation of 25mm in height, with a 
maximum relative step height hr

max of 10% leg length. 
The hip and knee joints data from the motor sensors in 
the real walking experiment. Fig.9&10 presents the 
image sequences of the walking experiment under a 
single step-up and step-up-down perturbation of 
Stepper-2D respectively. The robot reaches the periodic 
state after several steps. And when the step height is 
greater than 25mm, it falls backward. 

All the videos about the walking experiments 
including the single step-up and step-up-down could be 
found on our website 
http://v.youku.com/v_show/id_XMjA3ODM5OTcy.htm
l. 

 
Fig. 9 Image sequence extracted from video of a single step-up perturbation experiment (hr

max=25mm) 

 
Fig. 10 Image sequence extracted from video of a single step-up-down perturbation experiment (hr

max=25mm) 
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The compararison of maximum relative step height of 
Stepper-2D with other typical dynamic walkers is 
shown in table 1, suggesting that Stepper-2D achieves 
an improvement on the disturbance rejection of the 
previous research. 

Table 1 Compararison of maximum relative step height  

Type of dynamic walker Maximum 
Relative Step Height 

Stepper-2D 10% 
Flaminge [17] 9% 
Runbot [18] 4% 
Mike [15] 2% 

VI Conclusion and Future Work 

In this paper, we analytically study the disturbance 
rejection of Virtual Slope Walking by introducing the 
ground step perturbation. We theoretically prove that 
ground step perturbation can be transformed to the 
disturbance of initial system state and the successful 
step handling walking comes from the system’s cyclic 
stability. We then obtain the necessary and sufficient 
condition of recovering from the step perturbation by 
analyzing the relationship between the system state and 
the minimum initial state in the transition phase. Finally, 
we illustrate the effect of leg length shorten ratio β, 
equivalent extension angle θ*

II and inter-leg angle φ0 on 
the maximum relative step height hr, demonstrating that 
achieving fast walking speed always accompanying 
with large disturbance rejection in Virtual Slope 
Walking. The step handling walking experiment of 
Stepper-2D verifies the theoretical analysis results and 
presents an improvement on the disturbance rejection 
compared with the other current results. 

Starting from the step handling walking under the 
open-loop condition without external sensing device in 
this paper, we will introduce the sensing data of the step 
perturbation and study the sensor-based powered 
walking from the kinematic energy complement 
viewpoint, aiming at obtaining larger disturbance 
rejection for Virtual Slope Walking in the future work. 
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