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Abstract: In this study a neural network technique is adopted to a prediction of the electron flux at the geosynchronous 

orbit using several solar wind data obtained by ACE spacecraft and magnetic variations observed on the ground as 

input parameters. The parameter tuning for back-propagation leaning method is attempted to the feed-forward neural 

network. As a result, the prediction using the combined data of solar wind and ground magnetic data shows the highest 

prediction efficiency of 0.61, which is enough to adapt the actual use of the space environment prediction. 
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I. INTRODUCTION 

From 1950’s many spacecrafts have been launched 

into the near earth space and over 300 artificial satellites 

are operated as the significant infrastructure today. 

However such satellites are exposed in the sever 

environment on their orbits. In particular, the orbit in the 

range from 2 to 7 RE (Earth Radii) which include the 

geosynchronous orbit is well known as “Radiation Belt” 

filled with the high-energy particles. The high-energy 

(>106 eV) electrons are thought to be a cause of internal 

charging which give rise to the serious troubles on the 

electric circuit onboard the spacecraft. 

In order to avoid the significant problems on the 

satellite systems, it is important to predict the space 

environment especially for the high-energy particles. 

The physical element process of the high-energy 

electrons flux variations has not been understood well 

though much number of observations have been 

conducted by many investigators. Thus, it is difficult to 

predict the electron flux variations by the computer 

simulation based on the theoretical models, so that some 

studies of the electron flux predictions using the 

empirical models based on the statistical analysis were 

attempted. In the previous observations, it is well 

known that the electron flux shows the large 

enhancement during the magnetic storm which is driven 

by the disturbance of the solarwind (that is the high-

speed plasma stream flowing out from the sun).  

Some investigator tried to predict the electron flux 

variations by the linear prediction filter using the 

observed space environment data [1][2]. In these studies, 

the accuracy of the prediction was not enough to adopt 

the actual operations, though enhancement itself was 

well reproduced in 24hours-later predictions.   

Fukata et al. [3] first attempted the prediction of the 

electron flux variations using the neural network model. 

This model well predicted the variation of the electron 

flux during the disturbance period of the space 

environment. However, this model was developed by 

the statistical learning using only disturbed-days data, 

so that the transition from the quiet days to disturbed 

days (commencement of the electron flux enhancement) 

was not reproduced well. 

The objective of this study is to establish the 

prediction system to be applied to an actual space 

operation. We first attempt the prediction of the high-

energy electron flux enhancement by means of the 

neural network using the much amount of the data 

obtained by the spacecraft and ground network 

observations. Then we validate the accuracy of the 

prediction by using the prediction efficiencies (PE) for 

the various combinations of the input parameters. 
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II. DATA SET 

The electron flux enhancement generally occurs 

during the magnetic storms which have some precursor 

variations in the other monitored data. 

 

Fig1. Example data of the electron flux enhancement 

 

The bottom panel of Fig.1shows the electron flux 

variations for 27days in 2005. The horizontal axis is 

Day of year (Jan. 1 = 1 and Dec. 31 = 365). The 

electron flux increases in 121 and 136 days and exceeds 

the horizontal dashed line which indicates the alert level 

for the spacecraft’s interference. On the other hand, the 

obvious precursor could be seen (in the vertical dashed 

lines), that is, the increasing of the solarwind velocity 

(top panel) and AE index (third panel) precede the 

electron flux enhancement by 2days. The Dst index 

(second panel) shows the sudden decreasing preceding 

the electron flux enhancements. 

In this study, we use the solarwind data which is 

observed by Advanced Composition Explorer (ACE) 

space craft. The dataset of the solarwind consists of the 

velocity (Vsw), north-south component of the magnetic 

field (Bz) and 3-days integration of epsilon parameter 

( (which is calculated from the velocity and 

magnetic field and is consistent with the 

electromagnetic poynting flux from solar wind to the 

earth). The (Auroral Electrojet) AE index is determined 

from the magnetic field variations observed on the high-

latitude ground observatories and is proxy of the 

Auroral activity due to the solarwind disturbances. The 

Disturbed field during Storm Time (Dst) index is also 

determined by the ground magnetic variations. Since the 

magnetic observatories used in calculation for the Dst 

index are not at high latitude but at low latitude, the Dst 

index is generally utilized for the definitive scale of the 

magnetic storms (which is major electromagnetic 

disturbances in the space environment). The high-

energy (>2MeV) electron flux (E) at the 

geosynchronous orbit is observed by the GOES 10 

satellite operated by National Oceanic and Atmospheric 

Administration (NOAA). In the preparation for the 

analysis, we removed the error data from the hourly 

data for each observed data in the interval from 1998 to 

2006, and got 74376 samples for each hourly data. 

 

III. Neural Network 

 

In this study, since the output data of the model is 

24-hours-later prediction, the output data could not 

physically affect the past data used as the input 

parameter in actual causality. Thus, we adopted the 

feed-forward neural network model with the back-

propagation leaning method to predict the 24-hours-

later electron flux variations. Fig.2 represents the 

schematic illustration of the network model used in this 

study. The network consists from arbitrary number of 

middle layers which also consist from arbitrary number 

of neurons.  

 

Fig.2 schema of neural network 

 

All the data obtained from 1998 to 2006 were 

normalized in the range from -1 to 1 to be used as input 

parameters. In each neuron, input parameters are 

weighted with an appropriate weight and a sum of the 

weighted input is send to the transfer function of 

transient sigmoid. As a result, one output data can be 

obtained through the reiteration of above mentioned 

scheme. Then output parameter (𝑂𝑃 ) for the input 

parameters with the arbitrary pattern (P) is compared 

with the observed 24-hours-later electron flux (𝑇𝑃 ) 
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which is supervised data, and validate the following 

error function (E). 

 

𝐸 =
1

2
∑ (𝑂𝑃 − 𝑇𝑃)

2

𝑃
 

The appropriate weight for each neuron is determined 

by the steepest descend method to minimize E. In this 

analysis the reiterating calculation stopped under the 

condition that the error function E reaches less than 0.01. 

 

IV. Result of the analysis 

In the training process, various combinations of 

input parameters were attempted to evaluate the 

accuracy of the prediction. In order to quantitatively 

evaluate the accuracy of the prediction, we calculated 

the prediction efficiency (PE) which was adopted by 

NOAA Space Weather Prediction Center (SWPC) [4] as  

 

𝑃𝐸 = 1 −
𝑀𝑆𝐸
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where 𝑥𝑖 and 𝑓𝑖 are observed and predicted values of 

electron flux, respectively. Thus PE is based on the 

mean square error which is normalized by variance of 

the observed values.  

We classified the input parameters into three cases, 

that are, (1)data basically obtained in the space (E, Vsw, 

Bz, , UT), (2)data basically obtained on the ground (E, 

Dst, AE, UT), (3)combination data obtained both in the 

space and on the ground (E, Vsw, Dst, AE, UT), here UT 

means Universal Time. For each case, the training was 

conducted using the data from 1998 to 2006 except 

2003. It is known that the solarwind had been much 

disturbed in 2003 due to the large coronal hole appeared 

on the surface of Sun, so that we attempted the 

validation of the prediction to calculation of PE for the 

predicted electron flux with the observed data in 2003. 

We attempted the various combination of the 

number of middle layers and neurons for above three 

cases. The result is shown in Fig3. In cases 1 and 2, the 

relationship between the number of neurons and middle 

layers are not clear and the maximum PE is less than 

0.58. On other hand, in case 3, the dependence of PE on 

the number of neurons and middle layers is in the 

orderly manner. The maximum PE of 0.61 is shown 

under the condition that number of neurons is more than 

6 and number of middle layers is less than 4. This result 

means that the prediction of the electron flux shows the 

best performance using the both data observed in the 

space and on the ground.  

 

Fig3. Result of the network turning for 3 cases 

 

 For the case 3, the comparison between the 

predicted electron flux and observed electron flux is 

shown in Fig4. The enhancement of the electron flux is 

well predicted in entire variations though predicted line 

(solid line) sometimes shows the over estimation 

comparing to the observed line (dotted line).  

Fig4. Comparison between the predicted and observed 

variations 
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The both predicted and observed values for all data 

in 2003 are shown in the scatter plot of Fig4 to validate 

the prediction accuracy in more details. The vertical and 

horizontal axes are the observed and predicted values, 

respectively. The plots are fairly scattered in the 

condition that the flux is less than 4, which means the 

predicted values sometimes deviate from the observed 

values. In the condition that flux is more than 4, the 

plots become to concentrate on the dashed line, though 

the distribution of plots shows the overestimate 

tendency of ~10%. In terms of the application of the 

electron flux prediction to the actual space operation, 

~10 % of the overestimation could be acceptable to 

avoid the risk, by contrast the underestimation of the 

predictions connotes a significant risk for real 

operations.  

 

Fig5. Scatter plot of the predicted and observed 

values 

 

 

VI. CONCLUSION 

In the present study, we attempted the high-energy 

electron flux variations using the feed-forward neural 

network with back-propagation learning method. We 

could summarize the present study as follows. (1) The 

maximum PE shows 0.61 with input parameters 

obtained both in the space and on the ground. (2) The 

accuracy of the prediction increases with increasing an 

amount of the electron flux and tends to be an 

overestimation of ~10%. These results indicate that the 

present neural network model could be adopted in the 

real space environment forecast operation. 
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