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Abstract: We have utilized immunity-based diagnosis to detect abnormal behavior of components on a motherboard. 
The immunity-based diagnostic model monitors voltages of some components, CPU temperatures, and fan speeds. 
After simulating the abnormal behaviors of some components on the motherboard, we assessed the ability of the 
immunity-based diagnostic model to detect these abnormalities. To improve the diagnostic accuracy of the model, 
which can be decreased by isolated nodes, we used multiple diagnostic networks to connect isolated nodes to a 
network or other isolated nodes. This simulation showed that the immunity-based diagnostic model containing multi
ple diagnostic networks was an effective method for detecting abnormal behavior of components on the motherboard.  
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I. INTRODUCTION 

The prevalence of technology for cloud computing 
has increased the demand for data centers that provide 
such cloud computing. Each server in these data centers 
must therefore be available for data processing and data 
transmission. To maintain system availability, it is 
important to detect abnormalities during their early 
stages, before system failure. 

The simplest way of diagnosing abnormalities 
consists of evaluating each component individually by 
comparing the output value of its sensor with a 
predetermined threshold value. However, it is difficult 
to identify the abnormal component using this method 
[1]. Another method of diagnosis uses an immunity-
based diagnostic model [2-5], which was derived 
primarily from the concept of an immune network [6]. 
In this diagnostic model, mutual tests are performed 
among nodes and the dynamic propagation of active 
states. This diagnostic model has been used to diagnose 
node faults in processing plants [7], to the self-
monitoring/self-repairing in distributed intrusion 
detection systems [3], and to sensor-based diagnostics 
for automobile engines [4].  

We previously applied immunity-based diagnosis to 
the detection of abnormal behaviors of components on a 
motherboard [8]. After simulating the abnormal 
behaviors of some components on the motherboard, we 
evaluated the ability of this model to diagnose 
abnormalities of components of motherboard sensors in 
two experiments. In the first experiment, we found that 

the immunity-based diagnostic model outperformed a 
stand-alone diagnostic model. In the second experiment, 
which compared a fully-connected network with a 
correlation-based network for mutually testing the 
credibility of sensors, we found that the correlation-
based network had greater diagnostic accuracy in all test 
cases. In addition, we utilized a hybrid model, 
consisting of the stand-alone and immunity-based 
diagnostic models, to diagnose nodes connected to the 
network and isolated from the network. We found, 
however, that the accuracy of hybrid diagnosis  for 
isolated nodes was dependent on the stand-alone 
diagnostic model. These isolated nodes could decrease 
the diagnostic accuracy of the hybrid model. In this 
paper, we sought to improve diagnostic accuracy of 
multiple diagnostic networks by connecting the isolated 
nodes with one of the networks. 

II. Embedded Sensors on the Motherboard 

Since a motherboard has multiple sensors, including 
voltage, temperature, and fan speed sensors, 
abnormalities on the motherboard can be detected by 
monitoring these sensors. We therefore used sensor 
output values for diagnosis of the motherboard. 

We collected sensor output values on a server from 
July 27 to September 18. The specifications of the 
server are shown in Table 1. The average air 
temperature during that period was 25.3 °C, ranging 
from 20.1°C to 32.8°C. Data were collected using 
lm_sensors, a hardware health monitoring package for 
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Linux that allows information to be obtained from 
temperature, voltage, and fan speed sensors. 

Table 1. Server specifications 
Motherboard Supermicro® X7DVL-I 

OS Debian GUN/Linux 5.0 
Kernel 2.6.26-2-amd64 

Module 
lm-sensors version 3.0.2 

with libesensors version 3.0.2 
CPU Intel® Xeon E5410 2.33GHz×2 

Power supply Thermaltake Toughpower 700w 

Fan 
XFan model: RDM8025B×2 

Gantle Typhoon D0925C12B2AP×2
ADDA CFX-120S 

After collecting the output values from all 29 
sensors on the motherboard, we calculated the 
correlation coefficients of all sensors. We observed 
correlations involving 5 sensors (Table 2), and we 
therefore used these 5 sensors for evaluation.  
Table 2. Sensors used for evaluation and range of s

ensor output values 

Sensor Component Range Mean 
Standard

deviation

CPU1 CPU 
temperature 11.00-48.00(°C) 18.68 4.55 

Core2 Core2 
temperature 35.00-72.00(°C) 42.79 4.45 

VcoreA CoreA voltage 1.11-1.19(V) 1.121 0.007 

Vbat Internal 
battery voltage 3.23-3.26(V) 3.237 0.009 

Fan5 Fan speed 1012-1044(RPM) 1034 5.021 

III. Immunity-Based Diagnostic Model 

The immunity-based diagnostic model has the 
feature of a dynamic network, in which diagnoses are 
performed by mutually testing nodes (i.e., sensors) and 
by dynamically propagating their active states. In this 
paper, the targets of the immunity-based diagnosis are 
components with a sensor embedded on a motherboard. 
Each sensor can test linked sensors and can be tested by 
linked sensors. Each sensor is ass ned a state variable 
ܴ௜ indicating its credibility.  

ig

The initial value of credibility ܴ௜(0) is 1. The aim of 
diagnosis is to decrease the credibility of all abnormal 
sensors. That is, according to this model, if the 
credibility of a sensor is below a threshold value, that 
sensor is considered abnormal.  

When the value of credibility ܴ௜ is between 0 and 1, 
the model is called a gray model, reflecting the 
ambiguous nature of credibility. The gray model can be 
expressed by the equation:   

ௗ௥೔ሺ௧ሻ
ௗ௧

ൌ ∑ ௝ܶ௜
ା

௝ܴሺݐሻ௝ െ  ሻ,          (1)ݐ௜ሺݎ

Where 

ܴ௜ ൌ
ଵାୣ୶୮ ሺି௥೔ሺ௧ሻሻ

ଵ  ,              

௜ܶ௝
ା ൌ ൜ ௜ܶ௝ ൅ ௝ܶ௜ െ 1, if one of evaluation from i to j or j to i exists,          

   (3) 

(2) 

0,                   if neither evaluation from i to j nor j to i exists,

௜ܶ௝ ൌ ቐ
 1,         if a balance formula between sensors ݅ and ݆ is satisfied,        
െ1,      if a balance formula between sensors ݅ and ݆ is not satisfied,
0,         if there is no balance formula between sensors ݅ and ݆.           

       (4) 

In the right-hand side of Equation (1), the first term 
is the sum of evaluations from other nodes for node i. 
The second term is an inhibition term that maintains 
ambiguous states of credibility. In this model, 
equilibrium points satisfy the equation ݎ௜ (t) 
=∑ ௝ܶ௜

ା
௝ܴሺݐሻ௝ . Thus ܴ௜ monotonically reflects the value 

of ∑ ௝ܶ௜
ା

௝ܴሺݐሻ௝ . If ∑ ௝ܶ௜
ା

௝ܴሺݐሻ௝  is close to 0, then ܴ௜ is 
close to 0.5. The balance formulas were determined by 
calculating the relationships of the output values of the 
sensors (Table 3).  

Table 3. Balance formulas between sensors 
Sensor Balance formula 

CPU1-Core2 |CPU1-Core2| ≤ 26 
CPU1-VCoreA |CPU1-VCoreA×25| ≤ 20 

CPU1-Vbat |CPU1-Vbat×9| ≤ 18 
CPU1-Fan5 |CPU1-Fan5/34| ≤ 18 

Core2-VCoreA |Core2-VcoreA×45.5| ≤ 28 
Core2-Vbat |Core2-Vbat×16| ≤ 20 
Core2-Fan5 |Core2-Fan5/19| ≤ 21 

VCoreA-Vbat |VCoreA-Vbat/2.8| ≤ 0.05 
VCoreA-Fan5 |VCoreA-Fan5/893| ≤ 0.07 

Vbat-Fan5 |Vbat-Fan5/316| ≤ 0.07 

IV. Evaluation of the immunity-based 
diagnosis for motherboard sensors 

We evaluated the immunity-based diagnostic model 
for motherboard sensors by a simulation, using the four 
test cases shown in Table 4. 

Test cases 1 and 2 assumed that the speeds of Fan5 
were far outside the range shown in Table 2. A 
significant decrease in Fan speed (test case 1) would 
therefore cause the CPU temperature to rise, with the 
overheated CPU causing the server to crash. Conversely, 
a significant increase in Fan speed (test case 2) would 
waste power and decrease the life span of the Fan. 
Therefore, test cases 1 and 2 represent abnormal 
conditions. 

Test cases 3 and 4 assumed that the output values of 
the sensors were slightly out of the range shown in 
Table 2. Test case 3 assumed that the speed of Fan5 was 
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slightly higher than that shown in Table 2, but that Fan5 
was not abnormal. Test case 4 assumed that the 
temperature of CPU1 was slightly higher than that 
shown in Table 2, but that CPU1 was not abnormal. 
Temperatures outside the range are not always abnormal, 
because these temperatures depend on room 
temperature. Therefore, test cases 3 and 4 represent 
normal conditions.  

Table 4. Test cases 

Case 
Sensor output value 

State 
CPU1 Core2 VcoreA Vbat Fan5 

1 70 65 1.12 3.23 200 Abnormal
2 9 35 1.12 3.23 2000 Abnormal
3 14 35 1.12 3.23 1050 Normal 
4 50 60 1.12 3.23 1020 Normal 

1. Correlation-based network 
We previously described the construction of a 

correlation-based network [8], using the correlation 
coefficients shown in Figure 1. In the model presented 
here, we removed a weakly correlated network from a 
fully-connected network, forming a correlation-based 
network, because these connections may be unreliable 
for mutually testing the credibility of their sensors. 
Table 5 shows the results of correlation-based networks. 
Each value is a sensor credibility, i.e., ܴ௜ of Equation 
(2). 

 
Fig. 1. Correlation-based network 

 
Table 5. Results of a correlation-based network 

Test 
case 

Credibility 
Decision Accuracy

CPU1 Core2 VcoreA Vbat Fan5 

1 0.87 0.97 0.50 0.87 0.00 X O 

2 0.87 0.97 0.50 0.87 0.00 X O 

3 0.98 0.99 0.50 0.88 0.98 O O 

4 0.67 0.95 0.50 0.87 0.67 O O 

 In Table 5, we assumed that a component on the 
motherboard was abnormal if its credibility was less 
than 0.1. A diagnostic decision of “O” indicates an 
absence of abnormality, whereas a diagnostic decision 
of “X” indicates an abnormality. An accuracy of “O” 

indicates a correct decision, whereas an accuracy of “X” 
indicates an incorrect decision. 

The diagnostic model correctly identified the 
abnormal Fan5 in test cases 1 and 2, and did not falsely 
identify abnormalities in test cases 3 and 4. However, 
this diagnostic model could not correctly diagnose the 
isolated sensor, because the credibility of the isolated 
VcoreA sensor was always 0.50. 

2. Multiple diagnostic networks 
We hypothesized that utilizing multiple diagnostic 

networks, in which isolated nodes are connected to a 
network or another isolated node, would approve 
diagnostic accuracy. 

All combinations of the multiple networks used for 
immunity-based diagnosis are shown in Figure 2. Each 
evaluation was based on the four test cases shown in 
Table 4. The diagnostic accuracy of all multiple 
networks is shown in Table 6. 

In Table 6, a diagnostic accuracy of “P” indicates 
that the diagnostic model could not identify the 
abnormal component, although it detected multiple 
abnormalities.  

 

 
Fig. 2 Multiple diagnostic networks 
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Table 6. Diagnostic accuracy of multiple networks 
Test 
case (A) (B) (C) (D) (E) (F) (G) (H) (I) (J)

1 O X O X X O O X P X

2 O X O X X O O O X X

3 O O O O O O O X O O

4 O X O O O O O O X O

We found that diagnostic models (A), (C), (F) and 
(G) made correct decisions, whereas the other 
diagnostic models made incorrect decisions. 

In test cases 1, 2 and 3, each of the diagnostic 
networks (A), (C), (F) and (G) consisted of 3 sensors 
including Fan5. In contrast, the other diagnostic 
networks either consisted of 2 sensors including Fan5 or 
were weakly correlated networks. In test case 4, all 
diagnostic networks other than (B) and (I) showed 
results similar to those of CPU1.  

For example, Table 7 shows the successful results of 
diagnostic network (C), and Table 8 shows the 
unsuccessful results of diagnostic network (I). 

Table 7. Results of diagnostic model (C) 
Test 
case 

Credibility 
Decision Accuracy

CPU1 Core2 VcoreA Vbat Fan5 

1 0.640 0.640 0.659 0.659 0.021 X O 

2 0.640 0.640 0.659 0.659 0.021 X O 

3 0.844 0.844 0.659 0.659 0.844 O O 

4 0.385 0.683 0.659 0.659 0.385 O O 

Table 8. Results of diagnostic model (I) 
Test 
case 

Credibility 
Decision Accuracy

CPU1 Core2 VcoreA Vbat Fan5 

1 0.021 0.293 0.640 0.640 0.293 X P 

2 0.385 0.293 0.683 0.385 0.293 O X 

3 0.844 0.659 0.844 0.844 0.659 O O 

4 0.021 0.659 0.640 0.640 0.659 X X 

The diagnostic model in Table 7 misidentified the 
normal CPU1 in test case 1, and misidentified the 
abnormal Fan5 in test case 2. These results indicate that 
an immunity-based diagnostic model could not diagnose 
sensors on a weakly correlated network consisting of 2 
sensors.  

In test case 4 of Table 8, the diagnostic network 
misidentified the normal CPU1 due to a weak 
correlation network, although CPU1 belongs to the 
diagnostic network consisting of 3 sensors. 

This simulation showed that diagnostic accuracy 
depends on the size of the network and the correlation 
between nodes. 

V. CONCLUSION 

We applied immunity-based diagnosis to the 
detection of abnormal behaviors of components on a 
motherboard. We simulated the abnormal behaviors of 
some components on the motherboard, and we 
evaluated all the combinations of the diagnostic 
networks. We showed that diagnostic accuracy depends 
on the size of the network and the correlation between 
nodes of the network. In addition, we showed that the 
immunity-based diagnostic model with multiple 
diagnostic networks was an effective method for 
detecting abnormal behavior of components on the 
motherboard.  

In future, we will attempt to determine the 
relationships among diagnostic network topologies and 
correlation between nodes, and to improve the accuracy 
of the diagnostic model. 

REFERENCES 
[1] Tanaka T, Kawazu T, Kanda S (2003), Computer- 
assisted Diagnostic System Applied with ANFIS. 
Biomedical Fuzzy System Association 5(1):49-54 
[2] Ishida Y (1996), An immune network approach to 
sensor-based diagnosis by self-organization. Comples 
Systems Publication 10:73-90 
[3] Watanabe Y, Ishida Y (2003), Immunity-based 
Approaches for Self-monitoring in Distributed Intrusion 
Detection System. Knowledge-Based Intelligent 
Information and Engineering Systems (KES'2003) 
2774(2):503-510 
[4] Ishida Y (2006), Designing an Immunity-Based 
Sensor Network for Sensor-based diagnosis of 
Automobile Engines. Lecture Notes Computer Science 
4252:146-153 
[5] Watanabe Y, Ishida Y (2003), Mutual tests among 
agents in distributed intrusion detection systems using 
immunity-based diagnosis. Proc. of AROB 8th ’03:682-
685  
[6] Jerne N K (1973), The immune system. Scientific 
Amrecian, 229(1):52-60 
[7] Ishida Y (2004), Immunity-Based Systems: A 
Design Perspective.  Springer-Verlag 
[8] Shida H, Okamoto T, Ishida Y (2010), Evaluation of 
Immunity-Based Diagnosis for a Motherboard. 
Knowledge-Based Intelligent Information and 
Engineering Systems (KES'2010) 6278:628-636 

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11), 
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 478




