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Abstract: We propose an artificial intelligence membrane to detect network intrusion, analogous to a biological 

membrane that prevents viruses from entering cells. This artificial membrane is designed to monitor incoming packets 

and to prevent a malicious program code (e.g., a shellcode) from breaking into a stack or heap in a memory. While 

monitoring incoming TCP packets, the artificial membrane constructs a TCP segment of incoming packets, derives the 

byte frequency of the TCP segment, from 0 to 255 bytes, as well as the entropy and size of the segment. These 

features of the segment can be classified by a data mining technique such as a decision tree or neural network. If the 

data mining method finds a suspicious byte sequence, the sequence is emulated to ensure that it is just a shellcode. If 

the byte sequence is the shellcode, the sequence is dropped. At the same time, an alert is communicated to the system 

administrator. Our experiments examined 7 data mining methods for normal and malicious network traffic. The 

malicious traffic included 114 shellcodes, provided by the Metasploit framework and including 10 types of 

metamorphic or polymorphic shellcodes. In addition, real network traffic involving shellcodes was examined. We 

found that a random forest method outperformed all the other data mining methods, with a very high detection accuracy, 

including a true positive rate of 99.6% and false positive rate of 0.4%. 
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I. INTRODUCTION 

Anti-virus systems protect computers and networks 

from malicious programs, such as computer viruses and 

worms, by discriminating between malicious and 

harmless programs and by removing only the former. 

Therefore, anti-virus systems can be considered as a 

computer’s immune system. 

An innovative method, called a “virus throttle,” [1], 

has been found to slow and halt high-speed worms 

without affecting normal network traffic. We have 

previously proposed a “worm filter” to prevent the 

spread of both slow- and high-speed worms [2]. This 

worm filter limits the number of unacknowledged 

requests, rather than the rate of connections to new 

computers. In addition, we have proposed an immunity-

based anomaly detection method to detect worms in 

network traffic [3]. 

All of these methods monitor outgoing packets from 

an internal network; i.e., they detect internal anomalies. 

Other methods are needed to monitor incoming packets 

and to detect intrusive attacks. The four types of methods 

used to detect intrusive attacks include pattern matching 

[4], heuristic [5], emulation [6], and data mining [7][8] 

methods. Since pattern matching methods require 

signatures to detect intrusive attacks, they may miss new 

attacks due to an absence of signatures. In addition, 

metamorphic and polymorphic codes can produce so 

many patterns that it may be difficult to cover all patterns 

[9]. Heuristic methods attempt to detect intrusive code 

sequences such as consecutive NOP sequences (i.e., NOP 

sleds) and sequences that get a program counter (i.e., 

getPC). However, some NOP sleds are polymorphic 

[9],[10], and intrusive attacks may not get the program 

counter. Emulation methods, which emulate incoming 

packets as program code, can correctly detect an 

intrusive program code, but these processes are very 

slow. Data mining methods use a classifier, such as a 

decision tree or neural network, to distinguish between 

benign and malicious traffic using the features of 

network traffic. Although these methods detect malicious 

traffic at a high rate, their false positive rates may be 

high. 

We propose here an artificial intelligence membrane 

to detect network intrusion, analogous to a biological 

membrane that prevents viruses from entering cells. The 

artificial membrane was designed to prevent a malicious 

program code (e.g., a shellcode) from breaking into a 

stack or heap in memory. Our experiments examined 7 

data mining methods for normal and malicious network 

traffic. The malicious traffic included 114 shellcodes, 

provided by the Metasploit framework [10], and 10 kinds 

of metamorphic and polymorphic shellcodes. In addition, 

real network traffic involving intrusive network attacks 

was examined. 
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II. Network Intrusion 

Most network intrusion attacks are composed of a 

vulnerability attack and a shellcode execution (Figure 1). 

The vulnerability attack is used for network intrusion, 

following which the shellcode is executed. The shellcode 

is a tiny program code for operating anything on the 

computer, such as download of malicious software and 

its execution. 

The appearance of a shellcode is often disguised by 

an encoder (Figure 1). This type of shellcode is called a 

metamorphic or polymorphic shellcode. In metamorphic 

shellcodes, a set of instructions is replaced by an 

equivalent set of different instructions, whereas, in 

polymorphic shellcodes, a set of instructions is hidden by 

encryption (Figure 1). These techniques make such 

shellcodes difficult to detect because the appearance of 

these shellcodes differ from each other and on each 

occasion. Although signature-based detection works in 

some cases, polymorphism will eventually defeat such 

detection methods [9]. 

III. AN ARTIFICIAL INTELLIGENCE MEMB

RANE TO DETECT NETWORK INTRUSION 

To detect shellcodes, we propose an artificial 

intelligence membrane to detect network intrusions. The 

membrane plays a role similar to a cell membrane that 

protects a cell from non-self molecules. 

Figure 2 illustrates the algorithm of the artificial 

intelligence membrane. The artificial membrane 

monitors incoming TCP packets, and it constructs a TCP 

segment consisted of incoming packets. It then derives a 

byte frequency of the TCP segment, from 0 to 255 bytes, 

as well as the entropy and size of the segment. These 

features of the segment are classified by a data mining 

method such as a decision tree or a multi-layer 

perceptron (i.e., a neural network). If the data mining 

method identifies a suspicious segment, that segment is 

emulated to ensure that it includes just a shellcode. The 

emulation plays the role of eliminating false positives. If 

the segment includes the shellcode, the segment is 

dropped. At the same time, the system administrator is 

alerted. 

Emulation is performed by “libemu 0.2.0,” a small 

library offering x86 architecture emulation for shellcode 

detection [12]. This libemu has been partially modified 

for brute force detection of a suspicious byte sequence. 

Thus, the modified libemu can detect all x86 

architecture-based shellcodes provided by the Metasploit 

framework, including all metamorphic and polymorphic 

shellcodes. Although emulation is very slow, the entire 

performance of the proposed method is not slow because 

normal packets are eliminated in advance by the data 

mining method and most of the packets would not be 

suspicious. 
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Figure 2. Algorithm of the artificial intelligence me

mbrane. The parameters of the data mining method

 are trained in advance. 

 

 

Figure 1. Structure of a polymorphic shellcode. The NOP area 

contains consecutive NOPs, indicating no operation and control 

flowing to the shellcode area. The return address area contains 

the address to which the program counter returns (i.e., the 

address of the NOP area). If a vulnerability attack is successful, 

the program counter will jump to the NOP area and enter the 

shellcode area. 
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IV. EVALUATION OF DETECTION ACCURACY 

To find the best accuracy of detection of data mining 

methods, we evaluated accuracy of detection for 7 

methods equipped with Wakaito Environment for 

Knowledge Acquisition (WEKA) [13]: an instance based 

learner (IBk), decision trees (J48 and random forest), 

naïve bayes, an inductive rule learner (JRpp), and a 

support vector machine using sequential minimal 

optimization (SMO). The algorithm of each data mining 

method has been described [13]. All parameters of the 

data mining methods were default settings of WEKA. 

Each evaluation has been used for 10-fold cross-

validation. The data set was randomly divided into 10 

subsets, with 9 subsets used for training and 1 for testing. 

The process was repeated 10 times for every 

combination. This methodology can be used to evaluate 

the robustness of a given approach to detecting 

shellcodes. Experiments were performed on dual Intel 

Xeon E5410 2.33GHz processors with 12 GB RAM. The 

operating system was Debian GNU/Linux Squeeze. 

1. Evaluation of simulated traffic 

Experimental data consisted of normal http traffic 

and simulated malicious http traffic. The normal traffic 

consisted of 544 segments, whereas the malicious traffic 

was simulated by combining one normal http segment 

with one shellcode for each of the 114 shellcodes 

provided by the Metasploit framework, version 3.5.1. 

Other types of malicious traffic included metamorphic or 

polymorphic shellcodes encoded by 10 engines: 

“ADMmutate” [14], “CLET” [10], “alpha mixed,” 

“alpha upper,” “call4 dword xor,” “context cpuid,” 

“countdown,” “fnstenv mov,” “jmp call additive,” 

“shikata ga nai,” with the last 8 engines provided by the 

Metasploit framework [10]. 

“CLET” can disguise a shellcode as normal network 

traffic by padding bytes close to the statistical properties 

of the normal traffic between the shellcode and the return 

address sequence (Figure 1). In this experiment, the 

padding size was 500 bytes. Larger padding results in 

closer byte frequency between normal and malicious 

traffic [9], but it also makes it more difficult for the 

shellcode to control the target computer because the size 

of the buffer is not always sufficient to intrude into a 

stack in a memory. Note that only CLET-encoded 

shellcodes were encoded in advance by the “shikata ga 

nai” encoder to remove 0x00 byte codes from the 

original shellcodes. 

In addition, the encoders of “alpha mixed” and 

“alpha upper” can disguise a shellcode as real traffic by 

recoding the shellcode in a form that contains bytes 

matching the statistical properties of real traffic. 

The simulated traffic was examined using WEKA. 

Table 1 shows the accuracy of detection of simulated 

traffic. The true positive rate (TPR) was defined as the 

rate at which a suspicious segment was correctly 

classified as suspicious, whereas the false positive rate 

(FPR) was the rate at which a normal segment was 

falsely classified as suspicious. We found that the 

random forest method outperformed all other data 

mining methods (Table 1), with a TPR of 99.9% and an 

FPR of 0%. 

Table 2 shows the accuracy of detection of 

metamorphic and polymorphic shellcodes. The data 

mining method used in this experiment was a random 

forest method. All detection accuracies were very high, 

with all metamorphic and polymorphic shellcodes other 

than (4) having a TPR of 100% and an FPR of 0%. In 

addition, the polymorphic shellcodes encoded by CLET 

had a TPR of 100% and an FPR of 0%, whereas 

metamorphic shellcodes encoded by “alpha mixed” and 

“alpha upper” had a TPR  99.8% and an FPR of 0%, 

though the statistical properties of these shellcodes were 

similar to those of normal traffic. 

2. Evaluation of real traffic 

Experimental data were captured from a high-

interactive honeypot on VMware Workstation 6.0.3. The 

guest operating systems were Microsoft Windows XP 

Professional, SP1 and SP2. After extracting segment data 

from the captured data, we examined all the segment 

data using the modified libemu, finding 1469 normal 

segments and 976 malicious segments including 

shellcodes. 

To evaluate the performance of the data mining 

method, we examined all the above segments using the 

data mining methods of WEKA. Table 3 shows the 

accuracy of detection and testing time of real traffic. 

Again, we found that the random forest method 

outperformed all other data mining methods, with a TPR 

of 99.6% and an FPR of 0.4%. Eventually, there would 

be no false positives, because the suspicious segments 

can be analyzed by emulation. 
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V. CONCLUSIONS 

We have proposed an artificial intelligence 

membrane to detect network intrusion. This membrane is 

analogous to a biological membrane, which prevents 

viruses from entering cells. Similarly, the artificial 

membrane prevents shellcodes from breaking into a 

memory. 

Our experiments indicated that the random forest 

method outperformed all other methods. In addition, all 

metamorphic and polymorphic shellcodes were detected 

at a high rate. For real traffic, the TPR was 99.6% and 

the FPR was 0.4%. This high accuracy of detection is 

considered due to the training of both normal and 

malicious traffic data [9]. 

We are currently planning to implement this artificial 

intelligence membrane for practical use. 
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 Table 1 Accuracy of detection of simulated traffic (not all shellcodes were encoded). Each value is

 a weighted average. 

 

  IBk J48 Random forest Multilayer perceptron JRpp SMO Naïve bayes  

 TPR 99.6% 99.6% 99.9% 99.6% 99% 99.6% 99.3%  

 FPR 0.7% 0.7% 0% 0.7% 2.7% 1.3% 3.2%  

   

 Table 2. Accuracy of detection of simulated traffic for metamorphic and polymorphic shellcodes. Each 

value is a weighted average. Shellcodes were encoded by the following engines: (1) “ADMmutate,” (2) 

“CLET,” (3) alpha mixed, (4) alpha upper, (5) call4 dword xor, (6) context cpuid, (7) countdown, (8) 

fnstenv mov, (9) jmp call additive, and (10) shikata ga nai. 

 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)  

 TPR 100% 100% 100% 99.8% 100% 100% 100% 100% 100% 100%  

 FPR 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%  

   

 Table 3. Accuracy of detection and testing time of real traffic. Each value is a weighted average.  

  IBk J48 Random forest Multilayer perceptron JRpp SMO Naïve Bayes  

 TPR 99.4% 99.3% 99.6% 99% 99.2% 98.9% 98.5%  

 FPR 0.6% 0.7% 0.4% 0.7% 0.8% 0.8% 1.2%  

 Time (sec.) 0.66951 0.00054 0.00071 0.20002 0.00049 0.00307 0.02604  
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