
An Artificial Intelligence Membrane to Detect Network Intrusion
Takeshi Okamoto

Department of Information Network and Communication, Kanagawa Institute of Technology

1030, Shimo-ogino, Atsugi, Kanagawa 243-0292 JAPAN

take4@nw.kanagawa-it.ac.jp

Abstract: We propose an artificial intelligence membrane to detect network intrusion, analogous to a biological

membrane that prevents viruses from entering cells. This artificial membrane is designed to monitor incoming packets

and to prevent a malicious program code (e.g., a shellcode) from breaking into a stack or heap in a memory. While

monitoring incoming TCP packets, the artificial membrane constructs a TCP segment of incoming packets, derives the

byte frequency of the TCP segment, from 0 to 255 bytes, as well as the entropy and size of the segment. These

features of the segment can be classified by a data mining technique such as a decision tree or neural network. If the

data mining method finds a suspicious byte sequence, the sequence is emulated to ensure that it is just a shellcode. If

the byte sequence is the shellcode, the sequence is dropped. At the same time, an alert is communicated to the system

administrator. Our experiments examined 7 data mining methods for normal and malicious network traffic. The

malicious traffic included 114 shellcodes, provided by the Metasploit framework and including 10 types of

metamorphic or polymorphic shellcodes. In addition, real network traffic involving shellcodes was examined. We

found that a random forest method outperformed all the other data mining methods, with a very high detection accuracy,

including a true positive rate of 99.6% and false positive rate of 0.4%.

Keywords: network intrusion detection, malicious software, shellcode, data mining

I. INTRODUCTION

Anti-virus systems protect computers and networks

from malicious programs, such as computer viruses and

worms, by discriminating between malicious and

harmless programs and by removing only the former.

Therefore, anti-virus systems can be considered as a

computer’s immune system.

An innovative method, called a “virus throttle,” [1],

has been found to slow and halt high-speed worms

without affecting normal network traffic. We have

previously proposed a “worm filter” to prevent the

spread of both slow- and high-speed worms [2]. This

worm filter limits the number of unacknowledged

requests, rather than the rate of connections to new

computers. In addition, we have proposed an immunity-

based anomaly detection method to detect worms in

network traffic [3].

All of these methods monitor outgoing packets from

an internal network; i.e., they detect internal anomalies.

Other methods are needed to monitor incoming packets

and to detect intrusive attacks. The four types of methods

used to detect intrusive attacks include pattern matching

[4], heuristic [5], emulation [6], and data mining [7][8]

methods. Since pattern matching methods require

signatures to detect intrusive attacks, they may miss new

attacks due to an absence of signatures. In addition,

metamorphic and polymorphic codes can produce so

many patterns that it may be difficult to cover all patterns

[9]. Heuristic methods attempt to detect intrusive code

sequences such as consecutive NOP sequences (i.e., NOP

sleds) and sequences that get a program counter (i.e.,

getPC). However, some NOP sleds are polymorphic

[9],[10], and intrusive attacks may not get the program

counter. Emulation methods, which emulate incoming

packets as program code, can correctly detect an

intrusive program code, but these processes are very

slow. Data mining methods use a classifier, such as a

decision tree or neural network, to distinguish between

benign and malicious traffic using the features of

network traffic. Although these methods detect malicious

traffic at a high rate, their false positive rates may be

high.

We propose here an artificial intelligence membrane

to detect network intrusion, analogous to a biological

membrane that prevents viruses from entering cells. The

artificial membrane was designed to prevent a malicious

program code (e.g., a shellcode) from breaking into a

stack or heap in memory. Our experiments examined 7

data mining methods for normal and malicious network

traffic. The malicious traffic included 114 shellcodes,

provided by the Metasploit framework [10], and 10 kinds

of metamorphic and polymorphic shellcodes. In addition,

real network traffic involving intrusive network attacks

was examined.

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 463

II. Network Intrusion

Most network intrusion attacks are composed of a

vulnerability attack and a shellcode execution (Figure 1).

The vulnerability attack is used for network intrusion,

following which the shellcode is executed. The shellcode

is a tiny program code for operating anything on the

computer, such as download of malicious software and

its execution.

The appearance of a shellcode is often disguised by

an encoder (Figure 1). This type of shellcode is called a

metamorphic or polymorphic shellcode. In metamorphic

shellcodes, a set of instructions is replaced by an

equivalent set of different instructions, whereas, in

polymorphic shellcodes, a set of instructions is hidden by

encryption (Figure 1). These techniques make such

shellcodes difficult to detect because the appearance of

these shellcodes differ from each other and on each

occasion. Although signature-based detection works in

some cases, polymorphism will eventually defeat such

detection methods [9].

III. AN ARTIFICIAL INTELLIGENCE MEMB

RANE TO DETECT NETWORK INTRUSION

To detect shellcodes, we propose an artificial

intelligence membrane to detect network intrusions. The

membrane plays a role similar to a cell membrane that

protects a cell from non-self molecules.

Figure 2 illustrates the algorithm of the artificial

intelligence membrane. The artificial membrane

monitors incoming TCP packets, and it constructs a TCP

segment consisted of incoming packets. It then derives a

byte frequency of the TCP segment, from 0 to 255 bytes,

as well as the entropy and size of the segment. These

features of the segment are classified by a data mining

method such as a decision tree or a multi-layer

perceptron (i.e., a neural network). If the data mining

method identifies a suspicious segment, that segment is

emulated to ensure that it includes just a shellcode. The

emulation plays the role of eliminating false positives. If

the segment includes the shellcode, the segment is

dropped. At the same time, the system administrator is

alerted.

Emulation is performed by “libemu 0.2.0,” a small

library offering x86 architecture emulation for shellcode

detection [12]. This libemu has been partially modified

for brute force detection of a suspicious byte sequence.

Thus, the modified libemu can detect all x86

architecture-based shellcodes provided by the Metasploit

framework, including all metamorphic and polymorphic

shellcodes. Although emulation is very slow, the entire

performance of the proposed method is not slow because

normal packets are eliminated in advance by the data

mining method and most of the packets would not be

suspicious.

Vulnerability

 attack code

Shellcode

NOP

Polymorphic

Shellcode

Return

address

Decoder

Encoded shellcode

(Encrypted shellcode)

Control flow

No

Awaiting a new segment.

Emulation

The segment is dropped, and

 an alert is generated.

Data mining

Suspicious?

Shellcode?

Yes

Yes

No

Start

The segment

 is accepted.

Figure 2. Algorithm of the artificial intelligence me

mbrane. The parameters of the data mining method

 are trained in advance.

Figure 1. Structure of a polymorphic shellcode. The NOP area

contains consecutive NOPs, indicating no operation and control

flowing to the shellcode area. The return address area contains

the address to which the program counter returns (i.e., the

address of the NOP area). If a vulnerability attack is successful,

the program counter will jump to the NOP area and enter the

shellcode area.

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 464

IV. EVALUATION OF DETECTION ACCURACY

To find the best accuracy of detection of data mining

methods, we evaluated accuracy of detection for 7

methods equipped with Wakaito Environment for

Knowledge Acquisition (WEKA) [13]: an instance based

learner (IBk), decision trees (J48 and random forest),

naïve bayes, an inductive rule learner (JRpp), and a

support vector machine using sequential minimal

optimization (SMO). The algorithm of each data mining

method has been described [13]. All parameters of the

data mining methods were default settings of WEKA.

Each evaluation has been used for 10-fold cross-

validation. The data set was randomly divided into 10

subsets, with 9 subsets used for training and 1 for testing.

The process was repeated 10 times for every

combination. This methodology can be used to evaluate

the robustness of a given approach to detecting

shellcodes. Experiments were performed on dual Intel

Xeon E5410 2.33GHz processors with 12 GB RAM. The

operating system was Debian GNU/Linux Squeeze.

1. Evaluation of simulated traffic

Experimental data consisted of normal http traffic

and simulated malicious http traffic. The normal traffic

consisted of 544 segments, whereas the malicious traffic

was simulated by combining one normal http segment

with one shellcode for each of the 114 shellcodes

provided by the Metasploit framework, version 3.5.1.

Other types of malicious traffic included metamorphic or

polymorphic shellcodes encoded by 10 engines:

“ADMmutate” [14], “CLET” [10], “alpha mixed,”

“alpha upper,” “call4 dword xor,” “context cpuid,”

“countdown,” “fnstenv mov,” “jmp call additive,”

“shikata ga nai,” with the last 8 engines provided by the

Metasploit framework [10].

“CLET” can disguise a shellcode as normal network

traffic by padding bytes close to the statistical properties

of the normal traffic between the shellcode and the return

address sequence (Figure 1). In this experiment, the

padding size was 500 bytes. Larger padding results in

closer byte frequency between normal and malicious

traffic [9], but it also makes it more difficult for the

shellcode to control the target computer because the size

of the buffer is not always sufficient to intrude into a

stack in a memory. Note that only CLET-encoded

shellcodes were encoded in advance by the “shikata ga

nai” encoder to remove 0x00 byte codes from the

original shellcodes.

In addition, the encoders of “alpha mixed” and

“alpha upper” can disguise a shellcode as real traffic by

recoding the shellcode in a form that contains bytes

matching the statistical properties of real traffic.

The simulated traffic was examined using WEKA.

Table 1 shows the accuracy of detection of simulated

traffic. The true positive rate (TPR) was defined as the

rate at which a suspicious segment was correctly

classified as suspicious, whereas the false positive rate

(FPR) was the rate at which a normal segment was

falsely classified as suspicious. We found that the

random forest method outperformed all other data

mining methods (Table 1), with a TPR of 99.9% and an

FPR of 0%.

Table 2 shows the accuracy of detection of

metamorphic and polymorphic shellcodes. The data

mining method used in this experiment was a random

forest method. All detection accuracies were very high,

with all metamorphic and polymorphic shellcodes other

than (4) having a TPR of 100% and an FPR of 0%. In

addition, the polymorphic shellcodes encoded by CLET

had a TPR of 100% and an FPR of 0%, whereas

metamorphic shellcodes encoded by “alpha mixed” and

“alpha upper” had a TPR  99.8% and an FPR of 0%,

though the statistical properties of these shellcodes were

similar to those of normal traffic.

2. Evaluation of real traffic

Experimental data were captured from a high-

interactive honeypot on VMware Workstation 6.0.3. The

guest operating systems were Microsoft Windows XP

Professional, SP1 and SP2. After extracting segment data

from the captured data, we examined all the segment

data using the modified libemu, finding 1469 normal

segments and 976 malicious segments including

shellcodes.

To evaluate the performance of the data mining

method, we examined all the above segments using the

data mining methods of WEKA. Table 3 shows the

accuracy of detection and testing time of real traffic.

Again, we found that the random forest method

outperformed all other data mining methods, with a TPR

of 99.6% and an FPR of 0.4%. Eventually, there would

be no false positives, because the suspicious segments

can be analyzed by emulation.

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 465

V. CONCLUSIONS

We have proposed an artificial intelligence

membrane to detect network intrusion. This membrane is

analogous to a biological membrane, which prevents

viruses from entering cells. Similarly, the artificial

membrane prevents shellcodes from breaking into a

memory.

Our experiments indicated that the random forest

method outperformed all other methods. In addition, all

metamorphic and polymorphic shellcodes were detected

at a high rate. For real traffic, the TPR was 99.6% and

the FPR was 0.4%. This high accuracy of detection is

considered due to the training of both normal and

malicious traffic data [9].

We are currently planning to implement this artificial

intelligence membrane for practical use.

REFERENCES

[1] Williamson, MM (2002), Throttling viruses:

restricting propagation to defeat malicious mobile

code. ACSAC Security Conference 2002, 61 – 68

[2] Okamoto T (2005), A worm filter based on the

number of unacknowledged requests. KES’05,

LNAI 3682:93 – 99

[3] Okamoto T, Ishida Y (2006), Towards an

immunity-based anomaly detection system for

network traffic. KES’06, LNAI 4252: 123 – 130

[4] Roesch M (1999), Snort: lightweight intrusion

detection for networks. LISA’99, 229 – 238

[5] Pasupulati A, Coit J, Levitt K, Wu SF, Li

SH, Kuo JC, Fan KP (2004), Buttercup: on

network-based detection of polymorphic buffer

overflow vulnerabilities. NOMS, 1:235 – 248

[6] Polychronakis M, Anagnostakis KG, Markatos EP

(2007), Network-level polymorphic shellcode

detection using emulation. Journal in Computer

Virology 2(4): 257 – 274

[7] Payer U, Teufl P, Lamberger M (2005), Hybrid

engine for polymorphic shellcode detection. LNC S

3548(200):19 – 31

[8] Masud M, Khan L, Thuraisingham B, Wang X,

Liu P, Zhu S (2008), Detecting remote exploits

using data mining. IFIP, 285:177 – 189

[9] Song Y, Locasto ME, Stavrou A, Keromytis AD,

Stolfo SJ, On the infeasibility of modeling

polymorphic shellcode. Proc. of the 14th ACM

CCS’07, 541 – 551

[10] Metasploit project (2006), http://www.metasploit.

com/

[11] Detristan, T, Ulenspiegel, T, Malcom, Y, Underduk,

M (2003), Polymorphic shellcode engine using

spectrum analysis. Phrack 11(61)

[12] Baecher P, Koetter M (2007), libemu. http://libemu.

carnivore.it/

[13] Witten IH, Frank E (2005), Data mining: Practical

machine learning tools and techniques. Morgan

Kaufmann, 2nd edition

[14] K2 (2001), ADMmutate. http://www.ktwo.ca/ADM

mutate-0.8.4.tar.gz

 Table 1 Accuracy of detection of simulated traffic (not all shellcodes were encoded). Each value is

 a weighted average.

 IBk J48 Random forest Multilayer perceptron JRpp SMO Naïve bayes

 TPR 99.6% 99.6% 99.9% 99.6% 99% 99.6% 99.3%

 FPR 0.7% 0.7% 0% 0.7% 2.7% 1.3% 3.2%

 Table 2. Accuracy of detection of simulated traffic for metamorphic and polymorphic shellcodes. Each

value is a weighted average. Shellcodes were encoded by the following engines: (1) “ADMmutate,” (2)

“CLET,” (3) alpha mixed, (4) alpha upper, (5) call4 dword xor, (6) context cpuid, (7) countdown, (8)

fnstenv mov, (9) jmp call additive, and (10) shikata ga nai.

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

 TPR 100% 100% 100% 99.8% 100% 100% 100% 100% 100% 100%

 FPR 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

 Table 3. Accuracy of detection and testing time of real traffic. Each value is a weighted average.

 IBk J48 Random forest Multilayer perceptron JRpp SMO Naïve Bayes

 TPR 99.4% 99.3% 99.6% 99% 99.2% 98.9% 98.5%

 FPR 0.6% 0.7% 0.4% 0.7% 0.8% 0.8% 1.2%

 Time (sec.) 0.66951 0.00054 0.00071 0.20002 0.00049 0.00307 0.02604

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 466

