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Abstract: This research deals with one of the inverse

problem. It is estimating rules or strategies of generat-

ing spatio-temporal patterns which is generated by natu-

ral phenomena or social phenomena. We try to consoli-

date identifying method and evaluation method to clarify

generative mechanism. In this research, mainly, we use

probabilistic cellular automata (PCA) to describe genera-

tive mechanism. And we restrict spatio-temporal patterns

to ASEP patterns. In particular, we discuss conservation

of mass in ASEP model from spatio-temporal patterns.
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1 Introduction

Natural phenomena including physical and biolog-
ical ones present us inexhaustible amount of spatial
patterns: patterns of ice crystal, cloud, coastal rail-
road, forest fire, leaf arrangement, shells, and butter-
flies, to name only a few. Social phenomena also gen-
erate spatial patterns (e.g. traffic jams). They are a
few compared to natural one.

Constructing physical or mathematical models are
known as the way of research for understanding the
generative mechanisms of these spatial patterns. On
the other hand, Richards studied extracting cellular
automaton rules directly from experimental data [1].
They dealt with spatial patterns of dendrites formed
by NH4Br. They searched the space of rules which
is a set of probabilistic CA (PCA) rules as possible
models for spatio-temporal patterns, with a learning
algorithm. Ichise proposed a general and theoreti-
cal method for identifying a generative mechanism of
spatio-temporal patterns in CA frameworks [2]. They
restricted rules to one dimensional and straightforward
ones. Hence Richards’s and Ichise’s researches are one
of the reverse problems for traditional ones.

In this paper we expand the Ichise’s method which
can identify generative mechanism of spatio-temporal

patterns to target more complex mechanisms. The
previous method targets on spatio-temporal patterns
which is generated by one dimensional and straight-
forward rules of CA. However, we deal with character-
istic patterns (e.g. patterns of traffic jams, diffusion of
matters and other physical phenomena) which satisfy
conservation of mass. In fact, we succeeded to develop
a method to discover the conservation of mass from
these patterns.

Section 2 states definitions and notations used in
this paper. Section 3 represents the method of the
generative mechanism identification in the previous
study, and its problem. Section 4 expands the previ-
ous method for patterns of conservation of mass, and
applies to the ASEP model ones.

2 Definitions and Notations

After von Neumann used cellular automata (CA) in
his designing self-reproducing automata [3], not only
deterministic cellular automata (DCA) (e.g. [4, 5, 6])
but also probabilistic cellular automata (PCA) (e.g.
[7]) have been studied extensively. Cellular automa-
ton consists of cells arranged in a d-dimensional lat-
tice where d is a natural number. Each cell is an au-
tomaton which has a certain number of states; whose
inputs are the state of neighbor cells; and the output
is the state of the cell itself. In this paper, we restrict
ourselves to the case of binary state: 0 and 1 and one-
dimensional lattice with periodic boundary condition
where each cell has two neighbor cells: right and left.
st

i denotes the state of the cell i at the time step t and
its state at the next time step defined in equation (1).

st+1
i = f(nt

i) (1)

nt
i is states of the neighbor cells of the cell i at time

step t and defined in equation (2) with neighborhood
radius r.

nt
i = (st

i−r, · · · , st
i, · · · , st

i+r) (2)
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f : N → S is a mapping and called “transition rule”.
S is the set of state and N(= S2r+1) is the set of the
neighbor cells state. Where equation (3) represents
the graph f∗ of f , lf (∈ f∗) is called “local rule of f”.
Also, l ∈ N × S is called “local rule”.

f∗ = {lf |lf = (n, s), n ∈ N, s = f(n)} (3)

When each cell changes state stochastically, the
probability is described by equation (4).

P (s|n)
Where,

∀n ∈ N
∑
s∈S

P (s|n) = 1
(4)

The condition of the cells is expressed by c ∈ Sm

where m is the number of cells and ct indicates the con-
dition at time step t. Then CT = (c0, c1, · · · , cT ) rep-
resents a spatio-temporal pattern with T time steps.

3 Generative Mechanisms Identifica-
tion

3.1 Deterministic Mechanisms

We consider to identify the transition rule f from
a spatio-temporal pattern CT . Scanning the spatio-
temporal pattern CT gives the local rules f∗ = {lf},
and we get the transition rule f . For example, the
spatio-temporal pattern such as Table 1 is given, we
can identify the transition rule of Table 2.

Table 1: An example of spatio-temporal pattern when
m = 5 and T = 1.

c0 (0, 0, 1, 0, 0)
c1 (0, 1, 0, 1, 0)

Table 2: The identified deterministic rule from the
spatio-temporal pattern of Table 1.

nt
i (1, 0, 0) (0, 1, 0) (0, 0, 1) (0, 0, 0)

st+1
i 0 1 0 1

3.2 Probabilistic Mechanisms

If given CT is generated by probabilistic rule, we
need to estimate probabilistic distribution of local rule
from it. Hence we calculate the occurrence ratios of
each local rule. For example, Table 3 is a spatio-
temporal pattern which is generated by the probabilis-
tic rule and Table 4 is the probabilistic distribution of
local rules of it.

Table 3: An example of spatio-temporal pattern when
m = 5 and T = 1.

c0 (1, 0, 1, 0, 0)
c1 (1, 0, 0, 1, 0)

Table 4: The identified probabilistic rule from the
spatio-temporal pattern of Table 3.

nt
i (1, 0, 1) (1, 0, 0) (0, 1, 0) (0, 0, 1)

P (st+1
i = 1|nt

i) 0 1 0.5 0

4 Conservation of Mass Patterns Iden-
tification

4.1 ASEP and its Patterns

ASEP (Asymmetical Simple Exclusion Process) [8]
is known as the traffic jam model which satisfy the
conservation of mass. ASEP is also one of PCA. Each
car is arranged on the cell and goes forward at each
time step with probability p if there is not any car to
front (e.g. Figure 1). Each cell has binary state, 1
indicate existing a car and State 0 is not existing.

p p

Figure 1: ASEP model. Each cell can be occupied by
only single car. Only if there is not a car to front, each
car goes forward at each time step with probability p.

Figure 2 shows the spatio-temporal pattern which
generated by ASEP. Clumps of black cells indicate
that the traffic jams are occurring.

4.2 Problem of Previous Method

The previous method has a problem when the
spatio-temporal pattern satisfies the conservation of
mass. Because the previous method gives the rule
of straightforward CA (such as defined in Section 2).
In general, straightforward CA changes states syn-
chronously and cannot generate patterns which satisfy
the conservation of mass [9].

Table 5,6 show the rules identified from Figure 2, 3.
Figure 2 is different from Figure 3. Figure 2 satisfy the
conservation of mass and Figure 3 is not. However, the
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Figure 2: The spatio-temporal pattern which gener-
ated by ASEP with p = 0.8. The black cells indicate 1
and the white cells are 0. The vertical axis represents
time step and the horizontal is space.

rules are remarkably similar. Because the rule of Table
5 lose the conservation of mass. Hence we need expand
the previous method in order to solve the problem.

Table 5: The identified probabilistic rule from Figure
2.

nt
i (0,1,1) (0,1,0) (0,0,1) (0,0,0)

P (st+1
i = 1|nt

i) 1.00 0.18 0.00 0.00

n (1,1,1) (1,1,0) (1,0,1) (1,0,0)

P (st+1
i = 1|nt

i) 1.00 0.19 0.81 0.80

Table 6: The identified probabilistic rule from Figure
3.

nt
i (0,1,1) (0,1,0) (0,0,1) (0,0,0)

P (st+1
i = 1|nt

i) 1.00 0.18 0.00 0.00

nt
i (1,1,1) (1,1,0) (1,0,1) (1,0,0)

P (st+1
i = 1|nt

i) 1.00 0.19 0.80 0.80

4.3 Identification

In order not to lose the conservation of mass when
identifying the transition rule, investigating whether
the spatio-temporal pattern satisfies the conservation
of mass is necessary. Equation (5) is the necessary
and sufficient condition for satisfying the conservation
of mass. Equation (5) shows that the sum of variation
of mass of cells is 0 at every time step.

T−2∑
t=0

m−1∑
i=0

(st+1
i − st

i) = 0 (5)

Figure 3: The spatio-temporal pattern which gener-
ated by PCA without the conservation of mass. The
black cells indicate 1 and the white cells are 0. The
vertical axis represents time step and the horizontal is
space.

In addition, the spatio-temporal pattern generated
by ASEP (such as Figure 2) also satisfies equation (6)
where ∗ is the wild card: 0 or 1 and lti = (nt

i, s
t+1
i ).

When a car goes forward, equation (6) means that
other car does not suddenly appear and the car does
not either suddenly disappear.

lti = ((∗, 1, 0), 0) → lti+1 = ((1, 0, ∗), 1)
lti = ((∗, 1, 0), 1) → lti+1 = ((1, 0, ∗), 0) (6)

We consider a pattern and assume that the pattern
satisfies equation (6). Also we assume that the rule
of Table 7 identified from the pattern by the previous
method. Of course, the rule does not satisfy the con-
servation of mass. However we can transform the rule
to the hierarchical one. The hierarchical rule satisfies
the conservation of mass.

Table 8,9 show the hierarchical rule which trans-
formed from the rule of Table 7. In the hierarchical
rule, the state of cell is described as st

i = (at
i, b

t
i).

In the case of ASEP with probability p, the hier-
archical rule is represented by equation (7). Where
at

i indicates whether there is a car on the cell and bt
i

indicates whether a car goes forward. The hierarchi-
cal rule consists of the two phase. The first phase is
deciding that the car on the cell goes forward with
probability p (such as Table 8). The second phase is
actually moving the car on the cell to next cell based
on the decision of the first phase (such as 9).
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s
t+ 1

2
i = (at+ 1

2
i , b

t+ 1
2

i )

b
t+ 1

2
i = at

i(1 − at
i+1)σp

st
i = (at

i, b
t
i) = (at+1

i , b
t+ 1

2
i )

at+1
i = (1 − b

t+ 1
2

i−1 )(1 − b
t+ 1

2
i )at

i

+b
t+ 1

2
i−1 (1 − b

t+ 1
2

i )at
i−1(1 − at

i)

(7)

σp =
{

0 (with probability 1 − p)
1 (with probability p) (8)

Table 7: The straightforward probabilistic rule.
nt

i (0,1,1) (0,1,0) (0,0,1) (0,0,0)

P (st+1
i = 1|nt

i) p3 p2 p1 p0

nt
i (1,1,1) (1,1,0) (1,0,1) (1,0,0)

P (st+1
i = 1|nt

i) p7 p6 p5 p4

Table 8: The first phase of the transformed hierarchi-
cal rule from the rule of Table 7.

nt
i (0,1,1) (0,1,0) (0,0,1) (0,0,0)

P (b
t+ 1

2
i = 1|nt

i) 0 p2 0 0

nt
i (1,1,1) (1,1,0) (1,0,1) (1,0,0)

P (b
t+ 1

2
i = 1|nt

i) 0 p6 0 0

Table 9: The second phase of the transformed hierar-
chical rule from the rule of Table 7.

　

(at
i−1, a

t
i, a

t
i+1)

P (at+1
i |nt+ 1

2
i ) (0,1,1) (0,1,0) (0,0,1) (0,0,0)

(b
t+

1 2
i−

1
,b

t+
1 2

i
) (0,0) p3 1 p1 p0

(0,1) - 0 - -

(1,0) - - - -

(1,1) - - - -

(at
i−1, a

t
i, a

t
i+1)

P (at+1
i |nt+ 1

2
i ) (1,1,1) (1,1,0) (1,0,1) (1,0,0)

(b
t+

1 2
i−

1
,b

t+
1 2

i
) (0,0) p7 1 0 0

(0,1) - 0 - -

(1,0) - - 1 1

(1,1) - - - -

5 Conclusions

We addressed the problem of previous method. The
problem is losing the conservation of mass which is
one of the hidden rule in the spatio-temporal pattern
when identifying the rule. We solved the problem by
expanding the method to identifying the hierarchical
rule. The expanded method can investigate the con-
servation of mass from the spatio-temporal patterns.

Finally, we redefined the ASEP rule as the hierarchical
rule.
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