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Abstract: The unscented Kalman filter (UKF) has become an alternative in nonlinear estimation problems to overcome
the limitation of Taylor series linearization used by the extended Kalman filter (EKF). It uses a deterministic sampling
approach known as sigma points to propagate nonlinear systems and has been discussed in many literature. However,
a nonlinear smoothing problem has received less attention than the filtering problem. Therefore, in this article we
examine an unscented smoother based on Rauch-Tung-Striebel form for discrete-time dynamic systems. This smoother
has advantages available in unscented transformation over approximation by Taylor expansion as well as its benefit
in derivative free. This smoothing technique has been implemented and evaluated through a bearing-only localization
problem.
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I. INTRODUCTION

The nonlinear filtering problem has been deeply
studied and various methods are provided in litera-
ture. Among them, the most useful ones are the ex-
tended Kalman Filter (EKF), the ensemble Kalman Filter
(EnKF), the unscented Kalman Filter (UKF), and the
Particle Filter (PF). Historically, the EKF is still the
most widely adopted approach to solve the nonlinear
estimation problem. It is based on the assumption that
nonlinear system dynamics can be accurately modeled
by a first-order Taylor series expansion as proved by van
der Merwe [1]. The EnKF introduced by Evensen [2] is
a reduced rank filter which propagates the states through
nonlinearity and updates a relatively small ensemble of
samples from which an assumed Gaussian distribution
captures the main characteristics in the uncertainty. The
PF also uses a sampling approach to estimate the higher-
order moments of the posterior probability distribution
by propagating and updating a number of particles, but
without assuming Gaussian statistics as explained by
Arulampalam et al. [3].

The UKF, which is a derivative free alternative to
EKF, overcomes the differentiation problem by using a
deterministic sampling approach demonstrated by Julier
and Uhlmann [4] and Wan and van der Merwe [5]. The
state distribution is represented using a minimal set of
carefully chosen sample points, called sigma points. This
technique is used to linearize a nonlinear function of a
random variable through a linear regression betweenn

points drawn from the prior distribution of the random
variable. Since we are considering the spread of the
random variable during linearization, the technique tends
to be more accurate than the Taylor series linearization
used in the EKF, particularly in the presence of strong
nonlinearities as proved by van der Merwe [1]. The 2n+1
sigma points, are chosen based on a square-root decom-

position of the prior covariance, wheren is the state
dimension. These sigma points are propagated through
the true nonlinear function, without approximation, and
then a weighted mean and covariance is taken. This
approach results in approximations that are accurate to
the third order Taylor series expansion for Gaussian
inputs in all nonlinearities.

However, the nonlinear smoothing problem has re-
ceived less attention than the filtering problem in the
literature. Therefore, in this article we investigate the
unscented smoother based on Rauch-Tung-Striebel form
[6], [7] for discrete-time dynamic systems studied by
Särkkä [8] and Saifudin et al. [9], [10]. This smoother
takes a benefit over unscented transformation to the lim-
itation of Taylor approximation as well as its derivative
free advantages. To evaluate the performance of this
smoother, the algorithm is applied for a bearing-only
localization problem. In what follows, note that we will
use the abbreviations URTSS for the unscented Rauch-
Tung-Striebel smoother.

The structure of this paper is as follows: In section 2
we briefly describe the derivation of unscented Rauch-
Tung-Striebel smoother and its summary of an imple-
mented algorithm. A bearing-only localization problem
is presented in section 3 as an application example of
this algorithm, as well as discussions on the simulation
results. The paper is concluded in section 4.

II. UNSCENTED
RAUCH-TUNG-STRIEBEL

SMOOTHER

Consider a state space model of the form,

xk = Fk−1(xk−1, uk−1, wk−1)

yk = Hk(xk, vk) (1)
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where xk ∈ Rn is the state,yk ∈ Rm is the
measurement at timetk, uk−1 is the control action,
wk−1 ∼ N (0, Qk−1) is the Gaussian process noise,
vk ∼ N (0, Rk) is the Gaussian measurement noise,
Fk−1(·) is the process model function andHk(·) is the
measurement model function. The time stepk runs from
0 to T and at time step 0 there is no measurement, only
the prior distributionx0 ∼ N (m0, P0).

The purpose of the smoothing algorithm is to find ap-
proximations to the smoothing distributionsp (xk | y1:T )
for all k = 1, 2, . . . , T . The approximations are chosen
to be Gaussian:

p (xk | y1:T ) ∼ N (xk |ms
k, P

s
k ) . (2)

The optimal smoothing equations of the model can
be written in two options as mentioned by Klaas et
al. [11], named as two filter smoother and forward-
backward smoother. For the purpose of deriving the
Rauch-Tung-Striebel form of smoother, the forward-
backward smoothing will be used and it can be written
as follows:

p (xk | y1:T ) = p (xk | y1:k)

×
∫

p (xk+1 |xk) p (xk+1 | y1:T )
p (xk+1 | y1:k)

dxk+1

(3)

wherep (xk | y1:k) is the filtering distribution of the time
step k and p (xk+1 | y1:k) is the predicted distribution
of the time stepk + 1, which can be computed by the
prediction step of the optimal filtering. The smoothing
recursion is started from last time stepk = T and
proceeded backwards in time.

From Eq. (3), the Rauch-Tung-Striebel smoother can
be derived as shown by Särkkä [8]. Assumed that the
(approximate) mean and covariance of the filtering dis-
tributions

p (xk | y1:k) ≈ N (xk |mk, Pk)

for the model in Eq. (1) have been computed by the
unscented Kalman filter or a similar method.

Further assume that the smoothing distribution of time
stepk + 1 is known and Gaussian

p (xk+1 | y1:T ) ≈ N
(
xk+1 |ms

k+1, P
s
k+1

)
.

This smoothing algorithm can be summaried as follow-
ing steps:

1) Form the matrix of sigma points of the augmented
random variablẽxk =

(
xT
k wT

k

)T
such that

X̃k = [m̃k · · · m̃k] +
√
c

[
0

√
P̃k −

√
P̃k

]

wherem̃k =

[
mk

0

]
and P̃k =

[
Pk 0
0 Qk

]
.

2) Propagate the sigma points through the dynamic
model

X̃−

k+1,i = Fk

(
X̃x

k,i, X̃
w
k,i

)
, i = 1, . . . , 2n+ 1

where X̃x
k,i and X̃w

k,i denote the parts of the
augmented sigma pointi, which correspond toxk

andwk, respectively.
3) Compute the predicted meanm−

k+1, the predicted
covarianceP−

k+1 and the cross-covarianceCk+1:

m−

k+1 =
∑

i

W
(m)
i−1 X̃

−

k+1,i

P−

k+1 =
∑

i

W
(c)
i−1

(
X̃−

k+1,i −m−

k+1

)

×
(
X̃−

k+1,i −m−

k+1

)T

Ck+1 =
∑

i

W
(c)
i−1

(
X̃x

k,i −mk

)

×
(
X̃−

k+1,i −m−

k+1

)T

where the definitions of the weightsW (m)
i−1 and

W
(c)
i−1 are the same as in [5].

4) Compute the smoother gainDk, the smoothed
meanms

k and the covarianceP s
k :

Dk = Ck+1

[
P−

k+1

]
−1

ms
k = mk +Dk

(
ms

k+1 −m−

k+1

)

P s
k = Pk +Dk

[
P s
k+1 − P−

k+1

]
DT

k

The above procedure is a recursion, which can be used
for computing the smoothing distribution of stepk from
the smoothing distribution of time stepk+1. Because the
smoothing distribution and filtering distribution of the
last time stepT are the same, we havems

T = mT , P s
T =

PT , and thus the recursion can be used for computing
the smoothing distributions of all time steps by starting
from the last stepk = T and proceeding backwards to
the initial stepk = 0.

III. AN EXAMPLE APPLICATION
In this section we consider the problem of bearing

only localization as used by Bailey [12].

1. Process and measurement state

The discrete time vehicle state is given by:

xk = f (xk−1,uk−1, wk−1) (4)

wherexk = [xk yk φk]
T are the vehicle position coor-

dinates and its orientation in time stepk , respectively.
uk−1 = [V G]

T is control action in whichV is the ve-
hicle velocity, andG is the vehicle steering angle.wk−1

is a zero-mean Gaussian process noise with covariance
Q.

This vehicle is equipped with a range and bearing
sensor. It can sense an object bounding in±30 degree
semi-circle with the maximum range of30 meter. Only
bearing measurement data will be used in this example.
The measurement equation is as follows:

zk = h (xk,f i) + vk

=

[
tan−1(

fi,y − yk

fi,x − xk

)− φk

]
+ vk (5)

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11), 
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 400



0 20 40 60 80 100 120 140 160
-20

0

20

40

60

80

100

120

140

160

180

x-coordinate [m]

y
-c
o
o
rd
in
a
te
 [
m
]

 

 

Start

True

Landmark

Fig. 1. True trajectory and landmark.

wherexk, yk andφk are the vehicle position coordinates
and its orientation in time stepk, respectively.f i is a
landmark feature available at time when the sensor takes
a measurement. This landmark feature is assumed to be
static and represented as a Cartesian coordinate system
as (fi,x,fi,y). vk is assumed as zero-mean Gaussian white
measurement noise with covarianceR.

2. Simulation setup

Fig. 1 shows the landmark and true vehicle trajectory
setup for this simulation. The vehicle starts at a known
location (20 m, 20 m, −0.8 rad) and travels with a
nominal speed and a steering angle of3 m/s and0.05 rad,
respectively. The nominal control values are corrupted
with Gaussian noise with standard deviations0.3 m/s and
0.05 radian, respectively for each0.5 s sampling interval.
The sensor takes bearing measurement and its value
is assumed to be corrupted with Gaussian noise with
standard deviation0.09 radian. All simulation parameters
and their values are shown in Table 1.

The initial conditions for the filter are set to

x̂0 = x0

=




20
20

−0.8




and

P0 =




10−10 0 0
0 10−10 0
0 0 10−10




which basically means that the vehicle initial position
and its orientation are known.

3. Result and discussion

Fig. 2 shows the result of both UKF and URTSS. For
more reliable result, we calculated the root mean square
(rms) error ofx-axis, y-axis,φ and also its position for
every iteration step and they are shown in Figs. 3, 4, 5
and 6 respectively. Figs. 3 and 4 show that the rms errors
of the URTSS are always comparable to or lower than

Table 1. Simulation setup

Parameter Description Value Unit

V Velocity 3 m/s

G Steering angle 0.05 radian

WB Wheel-base 4 m

σV Standard deviation ofV 0.3 m/s

σG Standard deviation ofG 0.05 radian

σB Standard deviation of bearing 0.09 radian
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Fig. 2. Estimates by UKF and URTSS.

the error values produced by the UKF. This situation also
can been seen in rms vehicle position errors as shown
in Fig 6. However, the vehicle orientation rms errors
for both methods did not show a significant difference.
Futhermore, we took root mean square values for 1000
Monte Carlo runs. The results of filtering and smoothing
estimation inx-axis,y-axis, andφ are shown in Table 2
and it is proved that the URTSS has a better performance
over the UKF.

IV. CONCLUSION
In this paper, an unscented Rauch-Tung-Striebel

smoother (URTSS) has been applied to a bearing-only
localization problem and its performance has been also
evaluated in simulations. It was assumed that the vehicle
was equipped with a range and bearing sensor. To
compare the performance of both UKF and URTSS, the
rms errors were calculated. It was then found the URTSS
has a better performance over the UKF.

Table 2. RMS errors

Method xRMSE yRMSE φRMSE

UKF 0.8730 0.8361 0.0941

URTSS 0.7438 0.7367 0.0771
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Fig. 3. RMS error ofx-axis.
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Fig. 4. RMS error ofy-axis.
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Fig. 5. RMS error ofφ-axis.
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Fig. 6. RMS vehicle position error estimates by UKF and URTSS.
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