
Asynchronous migration for parallel genetic programming

on computer cluster with multi-core processers

 Shingo KUROSE
1
 Kunihito YAMAMORI

2
 Masaru AIKAWA

3
 and Ikuo YOSHIHARA

2

1
Graduate School of Eng., Univ. of Miyazaki

2
Faculty of Eng., Univ. of Miyazaki

3
Technical Center, Faculty of Eng., Univ. of Miyazaki

 (Tel : 81 985 58 7589; Fax : 81 985 58 7589)

(kurose@taurus.cs.miyazaki-u.ac.jp,{yamamori,yoshiha,aikawa@cs.miyazaki-u.ac.jp)

Abstract: Island model is a typical implementation model of parallel distributed genetic algorithms, and it is also used

in parallel genetic programming. Island model has migration process that exchanges individuals between sub-

populations to leave local optimum. However island model requires synchronous process to exchange individuals at the

same generation, and synchronous process increases computation time.

 This paper proposes a new parallel genetic programming model based on the island model with asynchronous

migration. We implement island model using Massage Passing Interface (MPI). Fitness calculation which requires the

longest computation time is processed in parallel by multi-threading. In addition, proposed method employs a

communication thread for migration between computation nodes, and communication thread communicates with

another communication thread to exchange individuals at appropriate intervals. The communication and genetic

operations can be independently processed on each core. Experimental results show that proposed method with five

computation nodes and forty threads can reduce computation time about 17% of serial GP.

Keywords: Genetic programming, MPI, Multi-threading, Island model, Asynchronous migration

I. INTRODUCTION

Genetic Programming (GP) [1,2,3] is one of the

evolutionary algorithms for optimization inspired from

biological evolution. GP expresses a candidate of

solution as a structural individual like a tree. Each

individual is evolved by genetic operations such as

crossover and mutation, and then only the individuals

that have superior fitness remain for next generation.

Through these evolutionary processes, GP can make a

model automatically. Computation time of GP becomes

longer as increasing of the number of individuals and

the generations to obtain more accurate solution. So GP

is usually implemented in computer cluster. Parallel GP

implementation can be classified into two models;

master-slave model and island model [2].

 This paper proposes a new parallel genetic

programming model based on the island model with

asynchronous migration. We implement island model

using Massage Passing Interface (MPI) [3]. Fitness

calculation which requires the longest computation time

is processed in parallel by multi-threading [4]. In

addition, proposed method employs a communication

thread for migration between computation nodes to

reduce synchronous overhead. We evaluated proposed

method on computer cluster.

II. PARALLEL GENETIC PROGRAMMING

1. Island model

Island model [2] is one of the implementation models

for parallel distributed genetic algorithms and it is also

used for parallel genetic programming. Island model

divides a population consisting of individuals into sub-

populations, and it assigns a sub-population to a

computation node. Individuals in each sub-population

Serial GP

Island model

GP

Computation

node 1

Computation

node 1

Sub-

population

1

Computation

node 2

Computation

node 3

Migration

Individuals

Sub-

population

2

Sub-

population

3

Fig. 1 An example of island model by three

computation nodes.

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 367

are independently evolved in parallel. The number of

individuals in sub-population is reduced, and genetic

operations for individuals in each sub-population are

processed in parallel, island model can reduce

computation time. In usual, island model has migration

process, that immigrates individuals from sub-

population to another sub-population, to leave local

optimum. Figure 1 shows an example of island model

by three computation nodes.

2. Synchronous migration

 Migration is a process to immigrate individuals from

sub-population to another sub-population at every some

generations. So the migration on computer cluster

requires network communication to exchange

individuals. Migrated individuals are chosen by various

ways. For example, migrated individual is an elite that

has the highest fitness in sub-population. In other way,

some individuals are chosen at random. Before

migration, computation nodes synchronize their

generation because independent evolution leads the

difference of computation time for each sub-population.

So some sub-populations have to wait their migration

until the slowest sub-population has finished their

operations.

III. ASYNCHRONOUS MIGRATION FOR

 PARALLEL GENETIC PROGRAMMING

1. Inter-nodes parallelization and

intra-nodes parallelization

 Proposed method implements island model using

Massage Passing Interface (MPI) [3] for inter-nodes

parallelization. MPI is a standard library for parallel

Computation

node

Sub-

population

<Fitness calculation><Usual state>

Core 1

Processer

Core 3

Core 2

Core 4

Shared memory

Main

thread

ReadWrite

Computation

node

Core 1

Processer

Core 3

Core 2

Core 4

Shared memory

Main

thread

ReadWrite

Fitness

calculation

thread

Fitness

calculation

thread

Fitness

calculation

thread

Sub-

population

Fig. 2. Intra-nodes parallelization

 using fitness calculation threads.

programming.

Recent processers equip some processing cores on a

die, and they share a main memory. This architecture is

suitable for multi-threading [4]. Our method creates

threads for fitness calculation, and these threads work in

parallel. Shared memory is used to exchange individuals

between main thread and fitness calculation threads.

Proposed method expects high speed processing by

using both inter-nodes parallelization by MPI and intra-

nodes parallelization by multi-threading. Figure 2 shows

intra-nodes parallelization using fitness calculation

threads.

2. Asynchronous migration

Proposed method creates a communication thread to

reduce waiting time by synchronization. At first main

thread creates individuals at random, and calculates

their fitness. Then the main thread of each computation

node selects an elite individual and stores it into the

transmission buffer. Here, synchronization is executed

just for once for reliable migration. Next, the main

thread creates a communication thread and it transfer

the individual stored in the transmission buffer to the

communication thread in the other computation node at

appropriate interval. The elite individual is exchanged

through the shared memory between the main thread

and the communication thread. The communication

thread also receives the transferred individual from the

other communication thread and stores it into the

receiving buffer. The main thread takes the migrated

individual from the other sub-population into their own

sub-population at appropriate interval when the genetic

operations are finished. Figure 3 shows an example of

individual exchanging between the main thread and the

communication thread. Figure 4 illustrates an example

Computation node

Sub-

population

Core 1

Core 2

Communication

thread

ProcesserShared memory

The transmission buffer

The receiving buffer

Another

communication

thread

Communication

Main thread
Read

Read

Write

Write

Send

Receive

Fig. 3. An example of individuals exchanging

 between the main thread and

the communication thread.

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 368

Computation

node 1

Sub-

population

Core 1

Processer

Core 3

Core 2

Core 4

Shared memory

Main

thread

ReadWrite

Computation

node 2

Core 1

Processer

Core 3

Core 2

Core 4

Shared memory

Main

thread

ReadWrite

Fitness

calculation

thread

Communication

thread

Fitness

calculation

thread

Communication

thread

Fitness

calculation

thread

Fitness

calculation

thread

Communication

Sub-

population

Fig. 4. An example of task allocation for

 two computation nodes with

four processing cores in a processor.

of task allocation for two computation nodes with four

processing cores in a processor.

IV. EXPERIMENTAL RESULTS

 We evaluate processing time and accuracy of

obtained solution on computer cluster. Table 1 shows

experimental environments. Computer cluster equips

distributed memory, and a multi-core processer has four

processing cores, and it equips hyper threading

technologies®, so eight threads can work in parallel. We

compare with three implementation models of parallel

GP. Table 2 shows detail of each model. The iGP is

parallel GP using basic island model. The tfGP is the

modified iGP using fitness calculation threads. In the

tfGP, eight fitness calculation threads are created. The

amGP is also the modified iGP using fitness calculation

thread and communication thread for asynchronous

migration. In the amGP, seven fitness calculation

threads and one communication thread are created. We

can evaluate the effect of intra-nodes parallelization by

Table. 1. Experimental environments.

CPU
Intel® Xeon E5530

2.40GHz ×2

Core/Thread 4 cores / 8 threads

Memory 8 GB

The number of
computation node

12 nodes

Table. 2. Details of each model.

 iGP tfGP amGP

Island model ○ ○ ○

Threaded fitness
calculation

× ○ ○

Asynchronous migration × × ○

Table. 3. Parameters of GP.

Parameters

The number of
generation

1,000

The number of
Individual

300

Max depth for
Individual

8

The number of
Training samples

600

Operator +, -, *, /, sin, cos, tan, log

Selection
Elitist schemes

Roulette selection

Mutation rate 0.1

Migrating individual Elite

Migration interval Every 50 generation

comparing the iGP with the tfGP. In addition, we can

also evaluate the effect of asynchronous migration by

comparing tfGP with amGP. Table 3 shows parameter of

GP. Individuals are divided into sub-populations equally.

In experimentation, training samples are taken from [5].

Figure 5 shows the computation time with respect to

the number of computation nodes. Serial GP takes

about 1,000 sec. for 1,000 generations. The iGP with

five computation nodes can reduce computation time

about 46% of serial GP. However, computation time is

increased when more than six computation nodes are

used. Figure 6 shows the average number of nodes in an

individual for each number of computation nodes. In the

iGP, the average number of nodes in an individual

increases when the number of computation node is

increased. Computation time of fitness calculation is

increased by increasing of the number of nodes in an

individual. As a result, the computation time for fitness

calculation is different among sub-population, and it

leads large overhead for synchronous migration. This is

the reason of increasing of computation time when more

than six computation nodes are used on the iGP and

tfGP.

 In Figure 5, the tfGP with five computation nodes and

forty threads can reduce computation time about 21% of

serial GP. Computation time is also increased when

more than six processors are used as well as the iGP. It

is because that synchronous migration takes large

overhead as well as the iGP.

In Figure 5, the amGP with five computation nodes

and forty threads can reduce computation time about

17% of seriasl GP.

Figure 7 shows the average fitness for each number

of computation nodes. Fitness of individual s is

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 369

calculated by Equation (1).

n

i

ii yy
n

F

F
Fitness

1

ˆ
1

1

(1)

In Equation (1), n is the number of training

samples, iŷ and iy are the desired value and the

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8

C
o

m
p

u
ta

ti
o

n
 t

im
e

(s
ec

)

The number of computation node

iGP

tfGP

amGP

Fig. 5. Computation time with respect to the

 number of computation nodes.

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8

T
h

e
n

u
m

b
er

 o
f

n
o

d
e

in
 i

n
d

iv
id

u
a
l

The number of computation node

iGP and tfGP

amGP

Fig. 6. Average number of nodes in individuals for

 each number of computation nodes.

8

8.5

9

9.5

10

10.5

1 2 3 4 5 6 7 8

F
it

n
es

s

The number of computation node

iGP and tfGP

amGP

Fig. 7. Average fitness for each number of

computation nodes.

output of the model for the i -th training sample,

respectively. In Figure 7, the average fitness of amGP

increases as well as the iGP and the tfGP when the

number of computation node is increased. In Figure 5,

computation time of amGP doesn’t increase even if

more than six processors are used. So, proposed method

is effective method when many computation nodes are

used to obtain more accurate solution.

V. CONCLUSION

 This paper proposed a new parallel genetic

programming model based on the island model using

asynchronous communication between computation

nodes. We implement island model using Massage

Passing Interface (MPI). Our method creates threads for

fitness calculation, and these threads work in parallel. In

addition, proposed method employs a communication

thread for asynchronous migration between computation

nodes. Experimental results showed that fundamental

parallel island model with five processors can reduce

computation time about 46% of serial GP. Furthermore,

our proposed method with five computation nodes and

forty threads can reduce computation time about 17% of

serial GP. In future, we will improve efficiency of

parallelization by investigating the load of each

computation node.

REFERENCES

[1] Numata N, Sugawara K, Yamada S et al. (1999),

Time Series Prediction Modeling by Genetic

Programming without Inheritance of Model Parameters.

Proc. Fourth Int. Sym. Artificial Life and Robotics:500-

503

[2] Eklund SE (2003), Time Series Forecasting using

Massively Parallel Genetic Programming. Parallel and

Distributed Processing Symposium:

10.1109/IPDS.2003.1213272

[3] Messom CH and Walker MG (2002), Evolving

Cooperative Robotic Behaviour using Distributed

Genetic Programming. Control, Automation, Robotics

and Vision: 215-219

[4] Nichols B, Buttlar D, Farrell JP (1996), Pthreads

Programming (A Nutshell handbook). Oreilly &

Associates Inc (California).

[5] Kamiguchi M, Yamamori K, Yoshihara I et al.

(2009), An Automatic Model Building for Screening

Functional Foods with GP. ICROS-SICE International

joint Conference 2009:3679-3684

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 370

