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Abstract
In order to improve the computing performance of

Genetic Algorithms (GAs), it is important to study the
effects of crossover and mutation. In this study, we ex-
amine the relations of first hitting time T of optimum
solution in population, success probability S, muta-
tion rate pm and crossover rate pc by GA experiments,
which are carried out on the 3-satisfiability (3-SAT)
problem. Here, S is defined as that there is at least
one optimum solution in a population at the station-
ary distribution. We found that, when mutation rate
is small, the effects of crossover on T and S are large.
S with crossover is larger than that without crossover,
and T is smaller than that without crossover. We also
observed the relation between T and a/S when mu-
tation rate becomes large, and found that T = a/S.
When pm = 0.02, T ≈ 1/S.

1 Introduction

The satisfiability (SAT) problem is a core of a large
family of computationally intractable NP-complete
problems [1] with relevant practical applications such
as automated reasoning, computer-aided design, ma-
chine vision, database, robotics, computer network de-
sign and so on. Methods to solve the SAT problem
play an important role in the fields of efficient com-
puting systems [2].

During the last two decades, several improved algo-
rithms have been developed, and important progress
has been achieved. These algorithms have consider-
ably enlarged our capacity of solving large SAT in-
stances. It can be divided into two main classes:
complete and incomplete algorithms. The first cate-
gory includes approaches based on the Davis-Putnam-
algorithm [3]. Most incomplete algorithms include ap-
proaches based on local search [4] and evolutionary
algorithms (EAs) [5, 6]. De Jong and Spears (1989)
proposed a classical GA for SAT problem, and ob-
served that the GA may not outperform highly tuned

and problem-specific algorithms. Their result was con-
firmed experimentally by Fleurent and Ferland (1996),
who reported poor performance of classical GAs when
compared to local search methods. Marchiori designed
a rather successful GA-based algorithm for hard 3-
SAT problems by combing a native GA with a local
search algorithm [7]. GA for SAT employ heuristic in-
formation into the fitness function or into the GA op-
erations (selection, crossover, and mutation) [2, 8]. In
this paper, we study the computational performance
of genetic algorithm on a 3-SAT problem. GA can
solve SAT problems. However it usually needs high
performance computing. To overcome this problem,
we study the mean first hitting time of optimum solu-
tion T , success probability S, the mean survival time
a and their relations.

2 3-Satisfiablity problem

The SAT problem is a task to determine whether
there exists an assignment of truth values to a set
of Boolean variables that make a conjunctive nor-
mal form (CNF) formula to be true [2]. The SAT
problem can be formulated as follows: given a set
of clauses C1, C2, . . . , Cm on the Boolean variables
x1, x2, . . . , xn, determine if there is an assignment for
the variables such that the formula C1 ∧C2 ∧ · · · ∧Cm

evaluates to true, where ∧ is a logical connector and.
A clause is a disjunction of literals, e.g., x1 ∨ x2 ∨ x3,
where a literal is a Boolean variable x or its negation
x̄, and ∨ is a logical connector or. If each Ci contains
exactly z distinct literals, then the problem belongs to
the z-SAT class [7]. In this paper we consider formu-
las in conjunctive normal form, and each clause has
exactly 3 literals.

We use the following notations, let:
• F be a CNF Boolean formula,
• m be the number of clauses in F ,
• n be the number of variables in F ,
• xk be the kth variable in F (1 ≤ k ≤ n),
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• Ci be the ith clause in F (1 ≤ i ≤ m),
• l be the clause length in Ci,
• Qi,j be the jth literal in the ith clause in Ci (1 ≤

j ≤ l).
We use bit variable xk = 1 or 0, corresponding to

true or false, respectively. We count the number of
clauses that are fulfilled by the variable assignment. A
chromosome is a candidate solution, which is a string
of bits having length equal to n.

A common formulation for CNF formulas exists [9].
The fitness function of F is expressed by

f(F ) =
m∑

i=1

Ci, (1)

where Ci is denoted as
Ci = Qi,1∨Qi,2∨Qi,3, Qi,j = xk or xk(j = 1, 2, 3).

If all clauses are satisfied, then f(F ) = m.
In this study a set of benchmark instance was used.

Problems in this benchmark are downloaded from the
SATLIB-benchmark Problems [10]. The instance pro-
vided here is cnf formulae encoded in DIMACS cnf
format. We use a uniform random-3-SAT problem,
uf20-91, with 20 variables and 91 clauses. Each of
clauses is constructed from 3 literals. The input of our
program is data file format with 91 rows, 3 columns.
We evolve a population of variable assignments until
we find an assignment that makes the formula true.

In the following we define some variables for eval-
uating the GA computing performance. The success
probability S(t) is defined as the probability that there
is at least one optimum solution at generation t in sta-
tionary distribution [11]. S is the time average of S(t)
defined by

S =
3000∑

t=1000

St. (2)

T is defined as the mean first hitting time of the op-
timum solution in a population. The mean survival
time a is the average consecutive generations contain-
ing optimum solution in the stationary distribution.

3 Numerical experiments

In this paper, we study the relation between the
success probability S and the mean first hitting time
T by experiments. We performed numerical calcula-
tions of GA with roulette wheel selection on the 3-SAT
problem. We carried out the experiments with string
length L = n = 20, number of clause m = 91 and
clause length l = 3. Crossover was done with the
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Figure 1: Dependence of average fitness on N . The
horizontal axis represents generation.

uniform crossover. The calculations were performed
repeatedly, and results were averaged over 10000 runs.

Figure 1 shows the dependence of average fitness on
N with pc = 1 and pm = 0.002. By comparing results
with N = 20, 50, 100, 200, we observe the strong N
dependence of average fitness.

Figure 2 shows the dependence of average fitness on
pm with pc = 1 and N = 200. By comparing results
with pm = 0.05, 0.005, 0.0005, we find strong pm de-
pendence of average fitness. When mutation becomes
strong, the average fitness is low, and converges into a
smaller value.

Figure 3 shows N -dependence of success probability
S with pm = 0.02. As show in this figure, the success
probability shows little difference between calculations
of pc = 0 and pc = 1. The effect of crossover on success
probability is small in this case.

Figure 4 shows pm-dependence of success probabil-
ity S with population size N = 50. The solid line
is success probability with crossover rate pc = 1, and
the dotted line is success probability with crossover
rate pc = 0. We find that the success probability with
crossover is larger than that without crossover when
mutation rate is small. However, when mutation rate
becomes large, the effect of crossover goes to small,
and the success probabilities are almost equal.

Figure 5 shows pm-dependence of the mean first hit-
ting time of optimum solution T with population size
N = 50. The value of T without crossover is larger
than that of with crossover, which means crossover
accelerates the speed of evolution in GA. When muta-
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Figure 2: Dependence of average fitness on pm. The
horizontal axis represents generation.
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Figure 3: N -dependence of success probability S with
crossover rates pc = 1 and 0. The horizontal axis rep-
resents population size N .
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Figure 4: pm-dependence of success probability S with
crossover rates pc = 1 and 0. The horizontal axis rep-
resents mutation rate pm.
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Figure 7: The dependence of a on N with pm = 0.02
and 0.002. The horizontal axis represents population
size N .

tion rate is large, the effect of crossover on T is small.
Figure 6 shows the relation between T and a/S

when pm is 0.02. a is the mean survival time. From
this figure we observe the relation of T = a/S. There
is strong N dependence of first hitting time of opti-
mum solution T .

Figure 7 shows the dependence of a on N with pm =
0.02 and 0.002. When pm = 0.02, a ≈ 1, while pm =
0.002, a is large. Therefore, the conclusion of T ≈ 1/S
is established if pm = 0.02.

4 Summary

The GA parameters, for example, population size
N , string length L, crossover rate pc and mutation
rate pm, influence the GA performance. In this study
of GA on 3-SAT problem, the effects of crossover and
mutation are investigated. The results show that :
when mutation rate is small,
1) The effects of crossover on S and T are large.
2) The success probability S with crossover is larger

than that without crossover, which means crossover
plays an important role on S.

3) The value of T with crossover is smaller than that
without crossover, which means crossover acceler-
ates the speed of evolution in GA.
We also observed the relation between T and a/S

when mutation rate becomes large, and that T ≈ a/S.
When pm = 0.02, a ≈ 1 and T ≈ 1/S.
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