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Abstract: The silicon neuron is a type of artificial neuron implemented with electronic circuit. Previously a
design approach based on mathematical structures under neuronal dynamics was proposed. It is based on the
mathematical techniques such as phase plane and bifurcation analysis. These methods allow us to implement
silicon neuron with smaller circuit area and to strategically adjust the bias parameter voltages without losing
variety of output patterns. In this study we demonstrate a mathematical-structure-based silicon neuron, which
operates a three-dimensional system. This silicon neuron can generate a firing pattern called square-wave
bursting. In this report we show the experimental results of this silicon neuron. We are planning to make
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pattern generating network using this silicon neuron and silicon synapses.
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I Introduction

The neuromorphic hardware is an electronic system that
mimics functions of nerve systems. Biological studies re-
vealed that nervous systems process information in funda-
mentally different ways from digital computers. They have
good adaptability to their environment and high robustness.
To investigate the mechanism of such splendid information
processing ability and to reproduce it in artificial systems,
many biophysical and theoretical studies have been done
about the neuron and the synapse which are the basic com-
ponent of the nerve system. Silicon neurons have been pro-
duced through the efforts to reproduce various properties
elucidated by these studies using electronic circuits.

There have been two major types of approaches, one is
phenomenological approach and the other is conductance-
based one. Phenomenological silicon neurons are based
on extremely simplified neuron models such as the leaky
integrate-and fire model [1]. They could be implemented by
relatively simple and compact circuit because phenomeno-
logical neuron models focus on the specific properties of
neurons, thus they are suitable for investigating large sili-
con neural networks. However, they reproduce limited as-
pects of neuronal dynamics because these models ignore the
ionic dynamics in neurons. On the other hand, conductance-
based silicon neurons, such as [2] are intended to emulate
the dynamics of ionic channels in neurons. They have the
ability to generate various firing patterns by adjusting the
externally applied parameter voltages to the circuit. How-
ever, they have drawbacks of complexity in their circuitry
and a number of parameter voltages to be adjusted. These
points raise difficulty in circuit implementation and oper-

ation under the presence of device mismatch and noises.
Thus it is hard to compose large silicon neural networks of
the conductance-based silicon neurons.

In previous studies [3], Kohno proposed a
mathematical-structure-based approach to design sili-
con neurons. Qualitative neuron models, such as the
FitzHugh-Nagmo [4] and the Hindmarsh-Rose models
[5] can generate various firing patterns with fewer pa-
rameters. However, their equations are not suitable for
implementation by electronic circuit. In the mathematical-
structure-based approach, the equations of the qualitative
models are modified so that they can be implemented by
electronic circuit effectively while preserving their math-
ematical structures utilizing phase plane and bifurcation
analyses. In this study we present a mathematical-structure-
based silicon neuron, which has three dimensional system
equations and designed to produce a burst firing pattern
called square-wave bursting when all of the three variables
are activated.

II System equations of our silicon neuron

The system equations of our silicon neuron contain
three variables, v, n and ¢. Variable v corresponds to the
membrane potential of the neuron, n and ¢ are the variables
that represent an ionic channel and a negative feedback cur-
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Figure 1: The n-v phase plane of silicon neuron model
(simulation). n-nullcline and g-nullcline are respectively
thesetof% :Oand% =0

rents. They are written as follows:
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where [, is an ionic current which is independent of the
membrane potential. Current [, is an externally applied
stimulus current. Constant C,, is the membrane capacitance.
Constant 7}, and T, are the time constants for n and g.

The functions f,(v) (x = m,n,q) and g(v) are the
sigmoidal characteristic curves of the differential-pair cir-
cuitries, which are expressed in the following forms:

1
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Equations (1) and (2) comprise the basic excitable sys-
tem, which can reproduce the same mathematical structures
as various non-bursting neuron models, such as Hodgikin-
Huxley and Morris-Lecar models. Equation (3) comprises
the negative feedback system that generates positive cur-
rent ¢ into the membrane capacitor while the potential v
is high, and negative current while v is low, whose mech-
anism cause the square-wave bursting when the basic ex-
citable system has a kind of bistability. Figure 1 shows the
v-n phase plane of the basic excitable system of our sili-
con neuron. When no stimulus current is applied, the mem-
brane potential stays at the stable equilibrium (S) (resting
point). If the stimulus current is small, the system state
cannot move over a stable manifold of the saddle point (T)
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Figure 2: Block diagram of our silicon neuron
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Figure 3: Schematics of f(v) (left) and g(v) (right) genera-
tor circuits.

and go back to (S). However, if the stimulus is sufficiently
strong, the system state travels around the unstable node (U)
and come back to the resting state. In the next section, we
present the circuit experiment results of our basic excitable
system.

IIT Circuit of our silicon neuron

In Fig.2 the block diagram of our silicon neuron is
shown. It is composed of differential pair (Fig.3), current
mirror, and current-mode integrator (Fig.4) circuits. The
differential pair circuits make the functional curves of the
nullclines, and the current-mode integrator integrates the
system equations. Each of function modules generates out-
put current which depends on membrane potential v, and
the output currents flow into the membrane capacitor whose
voltage represents v through current mirror or current-mode
integrator.
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Figure 4: Schematic of the current-mode integrator circuit
where MOSFETsS are operated in the subthreshold condi-
tion. This circuit realize the integration in Eqgs. (2) and (3).
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Figure 5: The v- and the n-nullclines drawn by the voltage
clamp system implemented in the same chip with silicon
neuron.

IV Experimental results
1 Drawing phase plane

Our silicon neuron has the voltage-clamp measurement
system inside the same VLSI chip, which can generate the
output currents of each functional modules while clamp-
ing the membrane potential to a specific voltage. Figure
5 shows the v-n phase plane of our silicon neuron, which
was drawn by this system. In the following subsections we
present experimental results of the basic excitable system in
our silicon neuron circuit. The values of parameter voltages
are shown in Table 1.

2 Responses to singlet pulse stimuli

Figure 6 shows the behaviour of the membrane potential
v in response to the singlet pulse stimuli. The duration of
the input pulse is 1.0 ms and the amplitude d;_,,  is varied
from —90 mV to —30 mV. The value of the amplitude is
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Table 1: Operating parameter set

Parameters  Values[V] Parameters Values [V]
Vbp 3.3 Vs, 0.09
Vss 0 Vu, 0.395
Vs, —0.01  Vjp, 0.243
Var, 031 Visu 0.39
Vo -0.13 V; 0
Vs 0.3 Vi 0
‘/:sln, 0 ‘/(;Istim O
Vs, 035 Vs, 0.35
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Figure 6: Response of the membrane potential to singlet
pulse stimuli. Stimulus is applied to the membrane ca-
pacitor through a V-1 transmitter circuit in the VLSI chip,
which converts negative voltage to positive current. The
duration of the stimulus pulse is 1.0 ms, and the strength is
varied from —30 mV to —90 mV.

negative voltage because stimulus current is applied via a
V-1 transmitter circuit that converts negative input voltage
into positive current. These results demonstrate that our sil-
icon neuron has the first four out of the five properties of
silent neurons described by Zeeman [6]. (1) a stable equi-
librium point exists that corresponds to the resting state. (2)
and action potential can be generated in response to an ex-
ternal stimulus, and the size of the response is absolutely
larger than that of the stimuli. (3) a threshold of the stimu-
lus magnitude exists for the generation of action potential.
(Fig.6 shows that the threshold voltage of our silicon neuron
exists between —50 mV and —60 mV.) (4) an action poten-
tial returns to the resting state more slowly than its rising
phase. (5) refractoriness exists after generation of an action
potential.

3 Responses to doublet pulse stimuli

Figure 7 shows the responses to the doublet pulse stim-
uli. The duration of the input pulse is 1.0 ms and their in-
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Figure 7: Responses to doublet pulse stimuli. The duration
of the input pulse is 1.0 ms and their interval is 20 ms. Both
of the pulses have the same amplitude of —60 mV, —70 mV,
or —80 mV. This graph shows that the responses to second
pulse is smaller than first one’s. This result indicates the
existence of refractory period after the firing.

terval is 20 ms. Both of the pulses have the same amplitude
of —60 mV, —70 mV, or —80 mV. In each amplitude, mem-
brane potential v was less responsive to the second stimulus
in comparison to the first one. This indicates the existence
of refractory period which is the fifth property in the Zee-
man’s characterization listed above.

V Square-wave burster mode

When the parameters are selected appropriately, a
saddle-loop homoclinic orbit bifurcation emerges in the ba-
sic excitable system when ¢ is varied. In this situation, there
exists a bistability between a stable limit cycle that repre-
sents a tonic firing state and a stable equilibrium that repre-
sents a silent state (see Fig.8). When the system state is in
the left side of the g-nullcline, % is positive, thus the state
point moves to the right direction generating tonic firing.
At the point of the saddle-loop homoclinic orbit bifurcation,
the minimum potential of the stable limit cycle reaches to
the saddle point and the state point is attracted to the sta-
ble node along the unstable manifold of saddle node. Then
% becomes negative, thus the state point moves to the left
until jumps to the limit cycle to generate tonic firing again.
These are the mechanism of generating square-wave burst-
ing in our silicon neuron.

VI Conclusion

We introduced a mathematical-structure-based silicon
neuron circuit with 3 variables and reported the experimen-
tal results of its basic excitable system. The mathematical
structure which dominates the circuit operation was repre-
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Figure 8: The v-¢ plane of the system equations of our sili-
con neuron. At the point of ¢ = 33.47pA, minimum of the
stable limit cycle reaches to the saddle point.

sented by the phase plane. We determined the externally ap-
plied parameter voltages utilizing the structures in the phase
plane. In HSpice circuit simulation, our silicon neuron cir-
cuit successfully produced burst firing patterns including
square-wave bursting (not shown). We are working on the
circuit experiments of the total system in our silicon neuron,
which will be presented in our future publications.
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