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Abstract: It is believed that common input to nearby neurons leads to their synchronous spiking. However,
recent studies have shown that recurrent neural networks can generate an asynchronous state characterized by
low mean spiking correlations despite substantial amounts of shared input. The asynchronous state is generated
by the interaction of excitatory and inhibitory populations, which is called active decorrelation. Here, we
investigate the advantage of the active decorrelation on signal transmission in multilayer neural networks. The
results of numerical simulations show that the active decorrelation is suitable for transmission of rate code
because it can suppress the layer-by-layer growth of correlation.
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1 Introduction

It is thought that brains process information by the tem-
poral and spatial patterns of neuronal firing. Previous stud-
ies showed that synchronous firing plays functional roles
such as binding information. However, a recent experiment
[1] has shown that the correlation of neuronal firing in mon-
key’s V1 is extremely low, and a theoretical study[2] has
proposed the mechanism that can generate an asynchronous
state although neurons share a large amount of input. The
asynchronous state is generated by the effect of balanced
excitatory and inhibitory populations, which is called active
decorrelation. In this study, we investigate the advantage of
the active decorrelation for information processing by nu-
merical simulations. We investigate how the active decor-
relation improves transmission of rate code in multilayer
neural networks.

2 Methods

2.1 Model Description

As mentioned earlier, we consider multilayer neural net-
works that transmit rate code (see Fig. 1). This network
structure corresponds to the hierarchical organization in the
real brains. For example, visual information is transmitted
through retina, LGN, V1, V2, and so on. Although it is
known that brains send top-down signals to process infor-
mation effectively, here, we do not consider such feedback
connections for simplicity.

Figure 1: Transmission of rate code in a multilayer network.
FR, firing rate.

2.1.1 Neuron Model

Here, we use McCulloch-Pitts model[3], which is the sim-
plest and popular neuron model. The model outputs 1 if the
sum of input from other neurons exceeds the threshold �. If
not, it outputs 0. The model’s equation can be described as
follows:

xi(t + 1) = 1[
∑

j

wijxj(t) − �], (1)

where wij is the conection strength from jth neuron to ith
one, � is the threshold, and 1[u] is the step function:

1[u] =
{

1 (u ≥ 0)
0 (u < 0) . (2)
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2.1.2 Network

The network architecture of our model is shown in Fig. 2.
X is external input consisting of excitatory neurons, E de-
notes an excitatory population, and I denotes an inhibitory
population. The number of neurons in each populations is
N=1000, and neurons are connected with probability p=0.2.
The layers correspond to the regions in Fig. 1. The inter-
layer connections of the model in Fig. 2 are only from exci-
tatory populations because it is known anatomically that ax-
ons of excitatory neurons are longer than those of inhibitory
neurons. Axons mean a part of neurons which play a role
of connection. Detail of parameter settings are the same to
the Renart’s study[2].

Figure 2: Schematic of the network architecture.

2.2 Evaluation

2.2.1 Rate Code

Rate code is one of the important information representa-
tions in brains. In this study, we consider mean firing rate
that is the number of firing neurons divided by the popula-
tion size. So the range is [0,1]. In other words, a neuronal
population represents one scalar value. Here, we investigate
the efficiency of transmission of rate code signals when the
active decorrelation works effectively (active decorrelation
ON) and when it does not (active decorrelation OFF).

2.2.2 Correlation

We evaluate whether the system is in synchronous states
or in asynchronous states by calculating correlation of neu-
ronal activities in each layer. The correlation is calculated
as follows:

rij =

T∑
t=1

(Ei(t) − Ei)(Ej(t) − Ej)√
T∑

t=1
(Ei(t) − Ei)2

√
T∑

t=1
(Ej(t) − Ej)2

, (3)

where rij is the correlation between ith neuron and jth neu-
ron, E is the time series of neuronal activities represented
by 1 (firing) and 0 (rest). Ei means the time average of

Ei(t). We consider the average of rij over all the pairs in a
population as the correlation of the population.

2.2.3 Time Response

Vreeswijk et al.[4] mentioned that the response time of the
population rates is shorter than the time constant of single
neurons in the balanced state. Here, we check the phe-
nomenon by changing the firing rate of external input mX

according to a sine curve and measuring the lag of the peaks
of population rates between layers.

3 Simulation Results

3.1 Transmission of Rate Code

The response against sine input is shown in Fig. 3. Each
line means each layer’s firing rate. The active decorrelation
is ON in Fig. 3 (A) and OFF in Fig. 3 (B). We change
the parameter � , which is the relative time constant of in-
hibitory neurons against excitatory ones, to switch between
active decorrelaion ON and OFF. � is set to 1 in Fig. 3 (A)
and 2 in Fig. 3 (B). The system transmits rate code clearly
when the active decorrelation is ON.

Figure 3: Time series of the firing rate of each excitatory
population in response to a sinusoidal input.
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The correlation and raster plots are shown in Fig. 4
where external input mX is fixed to 0.1 to check whether
the active decorrelation creates an asynchronous state. The
blue dots in Fig. 4 represent neuronal firing. Vertical stripes
mean synchronous firing of neurons. You can see that layer
3 is in a highly synchronous state when the active deccore-
lation is OFF. The active decorrelation suppresses the layer-
by-layer growth of correlations, and it is suitable for trans-
mission of rate code.

Figure 4: Raster plots and the correlations of neuronal firing
in multilayer networks.

By carefully checking Fig. 3 and Fig. 4, you can find
some features. In Fig. 3(A), the rough profile of the sine
curve is transmitted well but the correct values are not. For
example, the peaks of the firing rates are about 0.8 in exter-
nal input, 0.7 in layer 1, 0.65 in layer 2 and 0.60 in layer 3.
It is thought that the values of the firing rates decay because
of the deviation from linearity in the input-output relation-
ship, as shown in Fig. 5.

The intersection is about 0.5 in Fig. 5. It is the equi-
librium point because signals converge to the intersection
when they are transmitted through layers repeatedly. It is
easy to check if the intersection is stable or not. We denote
the value of the intersection as a and the response curve of
layer 1 as f . Here, a is about 0.5, and f is the red line

Figure 5: Firing rates in excitatory populations against ex-
ternal input. The active decorrelation is ON.

in Fig. 5. If f ′(a) > 1, a is an unstable fixed point, and
the firing rate converges to 0 or 1 depending on the initial
condition. If f ′(a) < 1, a is a stable fixed point, and the
firing rate converges to a. For the above reason, the only
perfect linear system can transmit rate code in infinite lay-
ers, and such a perfect one can not exist. So what we can do
for good transmission of rate code is to make the response
curve closer to linear one. This problem of response curves
between layers has been mentioned by Litvak[5].

In this paper, we have shown two problems to transmit
rate code in multilayer networks. One is the layer-by-layer
increase of correlation. The other is the nonlinearity in the
response curves. We have shown that the former problem
can be resolved by the active decorrelation.

3.2 Time Response

We investigate another advantage of the active
decorrelation—time response. As the frequency of external
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Figure 6: Responses to a sinusoidal input with increasing
frequency. The active decorrelation is ON.
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input mX increases in Fig. 6, the time lag becomes appar-
ent. You can see the lag is several milliseconds between
successive layers in Fig. 7 which is an enlarged view of
Fig. 6. In this model, the time constant of one excitatory
neuron is 10 ms, so the populations track the signal changes
quickly as compared with the time constant. A previous
study[4] has shown theoretically that such a quick tracking
occurs in balanced states. The study showed that the lag de-
creases in proportion to 1/

√
K, where K is the number of

connections per neuron. We have shown that such a quick
tracking also occurs in multilayer networks.
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Figure 7: An enlarged view of Fig. 6 in the range from 800
to 900 ms.

3.3 Characteristic Frequency

Another point that we can find from Fig. 3 and Fig. 4 is
that a synchronous network has a characteristic frequency.
In Fig. 4(B), synchronous firing which is represented as
vertical stripes is observed in layer 3, and it seems to be pe-
riodic. We set external input to various frequencies in the
situation of active decorrelation ”OFF” (� = 2) to check its
periodicity. An interesting phenomenon like sympathetic
vibration is observed in Fig. 8. It is not observed against
higher frequencies. So we can conclude that the network
with the active decorrelation OFF has a characteristic fre-
quency. It can play a role as oscillator in vivo. Further
parameter analysis would be required to check whether the
phenomenon occurs broadly.

4 Conclusion

We have investigated the advantage of the active decor-
relation for transmission of rate code in multilayer neural
networks. However, the active decorrelation seems incom-
patible with other codes such as temporal code. So it can
be thought that the brains use both synchronous and asyn-
chronous states depending on the situation and areas of the
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Figure 8: Sympathetic vibration in a synchronous network.
The active decorrelation is OFF.

brain. We have also observed the existance of characteristic
frequencies in synchronous networks. The networks seem
to have a range of resonant frequencies, and it is our future
problem to check the generality of the phenomenon.
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