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Abstract: A hybrid evolutionary algorithm is proposed to identify parameters for Lorenz chaotic system. In the proposed 
algorithm, time-varying learning algorithm based on annealing robust concept (ARTVLA) is adopted to optimize a 
radial basis function neural network (RBFNN) for parameter identification of Lorenz system. In the ARTVLA, the 
determination of the learning rate would be an important work for the trade-off between stability and speed of 
convergence. A computationally efficient optimization method, particle swarm optimization (PSO) method, is adopted 
to simultaneously find a set of promising learning rates and optimal parameters of RBFNNs. The proposed RBFNN 
(ARTVLA-RBFNN) has good performance for identifying parameters of Lorenz system. Simulation results are 
illustrated the effectiveness and feasibility of the proposed ARTVLA-RBFNN. 
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I. INTRODUCTION 
A chaotic system is a nonlinear deterministic system 

that has some special features of sensitive dependence on 
initial conditions and unstable bounded trajectories in the 
phase space. Due to their characteristics sensitivity to 
initial conditions, chaotic systems are not easy to identify. 
Recently, some researchers have endeavored to improve 
the identification of chaotic systems[1-3]. 

Recently, RBFNNs have received considerable appli- 
cations in various fields, such as function approximation, 
prediction, recognition, etc[4,5]. Since RBFNNs have only 
one hidden layer and have fast convergence speed, they 
are widely used for nonlinear system identifi- cation 
recently. Besides, the RBFNNs are often referred to as 
model-free estimators since they can be used to 
approximate the desired outputs without requiring a 
mathematical description of how the outputs functionally 
depend on the inputs[6,7] . 

When utilizing RBFNNs, a learning rate serves as an 
important role in the procedure of training RBFNs. 
Generally, the learning rate is selected as a time-invariant 
constant by trial and error. However, there still exist 
several problems of unstable or slow convergence. Some 
researchers have engaged in exploring the learning rate to 
improve the stability and the speed of convergence[8,9]. In 
this article, time-varying learning algorithm (TVLA) is 
then applied to train the RBFNN (TVLA-RBFNN), in 
which PSO method[10] is adopted to find optimal learning 
rates during learning procedure. A typical system, 
Lorenz chaotic system, will be given to illustrate the 
feasibility and efficiency of the proposed TVLA- 

RBFNNs for parameter identification of the chaotic 
system. 

II. PROBLEM FORMULATION 
Considering the following n-dimensional chaotic 

system: 
 0 0( , , )F=&X X X Q   (1) 

where nR∈X denotes the state vector, X0 denotes the 
initial state, and Q0 is a set of original parameters. 

When estimating the parameters, suppose the 
structure of the system is known in advance, and thus the 
estimated system can be described as follows: 

 0
ˆ ( , , )F=&X X X Q   (2) 

where ˆ nR∈
&

X  denotes the state vector, and Q is a set 
of estimated parameters. Therefore, the problem of para- 
meter estimation can be formulated as the following 
optimization problem: 

 Min 
1

21 ˆ
M

K K
K

J
M =

= −∑ X X  (3) 

where M denotes the length of data used for parameter 
identification, KX  and ˆ ,KX  denote state vectors of 
the original and the identified systems at time K, 
respectively. 

Obviously, the parameter identification for chaotic 
systems is a multi-dimensional continuous optimization 
problem, where the decision vector is Q and the optimi- 
zation goal is to minimize J. 
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III. ARTVLA-BASED RBFNNs USING PSO 

1. Architecture of RBFNNs 
In general, the input-output relation of a nonlinear 

system can be expressed as 
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where ( ) mt R∈x  is the input vector, ( ) pt R∈y is the 
output vector, nu and ny are the maximal lags in the input 
and output, respectively, and ( ) pt R∈f  denotes the 
nonlinear relation to be estimated. One can use a neural 
network to estimate the input-output relation of a 
nonlinear system.  

A radial basis function neural network (RBFNN) 
consists of three layers, the input layer, the hidden layer, 
and the output layer. The transformation from the input 
layer to the hidden layer is nonlinear. The output layer is 
linear and gives a summation at the output neurons. The 
structure of an RBFNN is shown in Fig. 1. When the 
Gaussian function is chosen as the radial basis function, 
an RBFN can be expressed in the form 
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  for 1, 2, ,j p= L ,(5) 

where ˆ ( ) mt R∈x  is the input vector, ˆ ( 1)jy t +  is the 
jth output, wij is the synaptic weight between the ith 
hidden neuron and the jth output neuron, Gi is the 
Gaussian function at the ith neuron in the hidden layer, mi 
and σi are the center and width of Gi, respectively, and l 
is the number of the Gaussian functions, which is also 
equal to the number of hidden layer nodes. 

2. PSO-Based ARTVLA 
In the training procedure of the proposed RBFNNs, 

the annealing concept in the cost function of robust 
back-propagation learning algorithm was adopted to 
overcome the existing problems in robust back- 
propagation learning algorithm, such as slow conver- 
gence rate and getting into local minimum[11]. A cost 
function for the ARTVLA is defined here as 

( )

1

1
( ) ( ); ( )

N
k

j j
k

J h e h h
N

ρ β
=

= ⎡ ⎤⎣ ⎦∑  for 1, 2, ,j p= L   (6) 

where  
 ( ) ( ) ( )ˆ( ) ( )k k k

j j je h y y= − x   (7) 

h is the epoch number, ( ) ( )k

je h  is the error between the 
jth desired output and the jth output of the RBFNN at 
epoch h for the kth input-output training data in a 
nonlinear system, β(h) is a deterministic annealing 
schedule acting like the cut-off point, and ( )ρ ⋅  is a lo- 
gistic loss function defined as 
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Fig. 1. The structure of an RBFNN. 
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Based on the gradient-descent kind of learning 
algorithms, the synaptic weights wij, the centers mi, and 
the widths σi of Gaussian functions are updated as 
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where ,
jwη  ,cη  and ση  are the learning rates for the 

synaptic weight wij, 1, 2, ,j p= L , the center mi, and 
the width σi, respectively, ( )ϕ ⋅  is usually called the 
influence function. 

In (9) to (11), when the learning rates are constant, the 
work for selecting an appropriate learning rate is tedious; 
moreover, there exists a tendency to get stuck in a 
near-optimal solution or to converge slowly. To overcome 
the stagnation in searching a globally optimal solution,  
TVLA is proposed to approach the optimal solution 
closely in this paper. In the TVLA, a nonlinear 
time-varying evolution concept is adopted over iterations, 
in which the learning rates ηw, ηc, and ησ with a high value 
ηmax and nonlinearly decreases to ηmin at the maximal 
number of epochs, respectively. This means that the 
mathematical expressions are given as shown as 

 ( )min max min

max

1
pw

w

h

epoch
η η η η= + − −

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (13) 

 ( )min max min

max

1
pc

c

h

epoch
η η η η= + − −

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (14) 

 ( )min max min

max

1
ps

h

epochση η η η= + − −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (15) 
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where epochmax is the maximal number of epochs and h is 
the current number of epochs. In the updated procedure, 
appropriate functions for the learning rate ηw, ηc, and ησ 
can promote the performance of RBFNNs. However, 
simul-taneously determining the optimal combination of 
pw, pc, and ps is a time-consuming work. 

In this paper, the PSO method is adopted to find the 
optimal combination (pw, pc, ps) of learning rates in (13) 
to (15) and optimal parameters of RBFNNs for parameter 
identification of Lorenz system. In the system identi- 
fication, the goal is to minimize the error between the 
desired outputs and the trained outputs. Therefore, the 
root mean squares error (RMSE) should be used to define 
a fitness function. This means that the fitness function 
will be defined as 

( )2( ) ( )

1

1
ˆN k k

k
RMSE y y

N =
= −∑  (16) 

where ( )ky  is the desired output, ( )ˆ ky  is the trained 
output for N sampling data. 

IV. SIMULATION RESULTS 
The identification scheme of a chaotic system is 

depicted in Fig. 2, training input-output data are obtained 
by feeding a signal x(k) to the  system and measure its 
corresponding output y(k+1) Then subject to the same 
input signal, the objective of identification is to construct 
an ARTVLA-RBFNN using PSO method, which 
produces an output ˆ ( 1)k +y  to approximate y(k+1) as 
closely as possible. 

In this section, Lorenz system is used to verify the 
feasibility of the proposed ARTVLA-RBFNNs. When 
applying the proposed algorithm, the population size, the 
maximal iteration number, and the maximal epoch 
number are chosen to be 30, 200, and 200, respectively. 
The variables pw, pc, and ps in learning rate functions 
(13) to (15) are all chosen as real numbers in the range 
[0.1, 5] . Meanwhile, the values of ηmax and ηmin are set as 
3.0 and 0.5, respectively. 

Two problems are investigated for Lorenz system. 
First, the impact on efficiency of annealing robust 
learning algorithms (ARLA) for various learning rates is 
studied, in which the best learning rate will be determined 
by trial and error. Secondly, the comparison between the 
proposed ARTVLA-RBFNN with nonlinear time-varying 
learning rates and the ARLA-based RBFNN 
(ARLA-RBFNN) with a fixed learning rate is illustrated. 
The RMSE (16) of the training data is adopted to evaluate 
the performance of the RBFNNs. 
Example: A typical chaotic system, Lorenz system, is 
considered as an example described as follows[2,12]: 
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Fig.2. The proposed PSO-based ARTVLA-RBFNN 
scheme for parameter identification of Lorenz system. 

 
where 1 2 31,  5.46,  20q q q= = =  are the original 
parameters. The initial values of the system are 

(0) 0.3,  y(0) 0.3,  z(0) 0.2.x = − = =  
With the 2000 training data, two annealing robust 

algorithms are then applied to train the RBFN, 
respectively. 

Problem 1:  
In the ARLA-RBFNNs, various learning rates, 

0.5 3.0η≤ ≤ , are used to train the RBFNNs. After 200 
training epochs, the RMSE values for various learning 
rates are obtained, respectively. The details of the 
simulation results are shown in Table 1. 
Problem 2: 

With the nonlinear learning rates, the ARTVLA is 
adopted to train the RBFNNs, in which the optimal 
learning rates are determined by linear time-varying 
evolution PSO[13] method. The optimal sets in (13) to (15) 
are obtained as follows:  
( , , ) (1.3379, 0.0547, 1.0273),pw pc ps =  
( , , ) (4.4722, 0.0309, 3.2897),pw pc ps = and 
( , , ) (1.4503,  0.3081, 4.1117)pw pc ps =   for x (t), y(t), 
and z(t), respectively. Meanwhile, the final values of 
RMSE with ARTVLA-RBFNNs are found to be 0.02313, 
0.02733, and 0.05276 shown in Table 1. Figure 3 shows 
the values of RMSE for x(t), y(t), and z(t) using the 
proposed algorithm with optimal learning rates. To show 
the feasibility of the ARTVLA-RBFNNs, the errors of 
training data after 200 epochs are illustrated in Fig. 4. 

V.  CONCLUSIONS 
This paper presented PSO-based ARTVLA to train 

RBFNNs for parameter identification of Lorenz chaotic 
system. In the proposed ARTVLA-RBFNNs, time- 
varying learning rates and optimal parameters of 
RBFNNs are simultaneously determined by PSO method. 
Then the optimal RBFNNs are adopted to identify the 
chaotic system. From the simulation results, the 
effectiveness and the feasibility of the proposed 
ARTVLA-RBFNNs identifying parameter of Lorenz 
system has been verified. Meanwhile, the superiority of 
the proposed ARTVLA-RBFNNs with nonlinear 
learning rates over the ARLA-RBFNNs with fixed 
learning rates for parameter identification has been 
illustrated. 
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Fig. 3. The values of RMSE after 200 training epochs 
using ARTVLA-RBFNN with the optimal learning rates. 
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Fig. 4. The plots of )(ˆ)( kykyerror −=  for 2000 
training data after 200 training epoch. 

 
Table 1. The values of RMSE (16) for Lorenz chaotic system after 200 training epochs, in which ARLA with various 
learning rates and ARTVLA with time-varying learning rates are applied to train the RBFNNs.  

ARLA (learning rate η ) 
 ARTVLA 

4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.2 
x(t) 0.0231 0.0657 0.0392 0.0356 0.0386 0.0419 0.0389 0.0492 0.0727 0.0925
y(t) 0.0273 0.0929 0.0927 0.0584 0.0750 0.0431 0.0393 0.0824 0.1077 0.1560
z(t) 0.0528 0.1024 0.1008 0.0945 0.0944 0.0880 0.0623 0.0675 0.0703 0.0976
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