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Abstract: This paper is concerned with the control of wheeled mobile robots (WMRs) using a modified variable 
structure theory. Firstly, we introduce the dynamic characteristic of a WMR. Secondly, the conventional variable struc-
ture control is reviewed. To remarkably improve the transient response during the reaching phase, a modified variable 
structure control is proposed. The validity of the proposed variable structure theory is verified by means of a simulation 
testing on a homemade wheeled mobile vehicle. The simulation results validate the superiority and practicality of the 
modified variable structure for WMRs. 
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I. INTRODUCTION 
Mobile robots have a wide background of application, 

and motion control of WMRs has found considerable 
attentions over the last decades. The path-tracking con-
trol problem of WMRs has received sustained attention 
[1][2][14]. However, the above researches are mainly 
based on kinematic models of nonholonomic mobile 
robots. Moreover, the velocity commands must be con-
verted into the actual control input for vehicles. Hence, 
dynamic models of systems should be considered. Re-
cently, several authors also consider the dynamic model 
of the WMR [7][13]. 

Variable structure control was initiated in Russia by 
many researchers, like Barbashin [3], Utkin [10], Emel-
yanov [8]. The control scheme has successfully been 
applied to many engineering problems including auto-
matic flight control, chemical processes, helicopter sta-
bility augmentation systems, electric motors, robots, etc. 
Variable structure control law is deliberately changed 
according to some defined rules which depend on the 
state of the system. The scheme has been mainly con-
sidered for continuous-time systems in the form of slid-
ing mode control. 

Sliding mode control is known to be very robust 
against parameter variations and external disturbances 
and has been widely accepted as an efficient method for 
tracking control of uncertain nonlinear systems. It has 
been shown to be able to achieve ‘perfect’ performance 
in principle in the presence of parameter uncertainties, 
bounded external disturbance, etc [6]. However, in order 
to account for the presence of parameter uncertainties 
and bounded disturbances, a discontinuous switching 
function is inevitably incorporated into the control law 
to achieve so-called sliding condition [11]. Due to im-
perfect switching in practice it will raise the issue of 
chattering, which is usually undesirable. To suppress 

chattering, a continuous approximation of the discon-
tinuous sliding control is usually employed in the litera-
ture. Though, the chattering can be made negligible if 
the width of the boundary layer is chosen large enough, 
the guaranteed tracking precision will deteriorate if the 
available control bandwidth is limited. To reach a better 
compromise between small chattering and good track-
ing precision in the presence of parameter uncertainties, 
various compensation strategies have been proposed. 
For example, integral sliding control [4], [5], [9], sliding 
control with time-varying boundary layers [5] etc., were 
presented. Alternatively, applying so-called reaching 
law approach, Gao et al. [12] proposed sliding control-
lers such that the trajectories are forced to approach the 
sliding surface faster when they are far away from the 
sliding surface. This approach seems to be an efficient 
method capable of increasing the approaching speed to 
the sliding surface; however, the behavior of the system 
dynamics, governed by the transformed first-order equa-
tion, can only be predicted through the measurement of 
the generalized error; hence the transient response dur-
ing the reaching phase may not be remarkably improved. 

 In this paper, it is concerned with the control of a 
WMR using a modified variable structure theory in the 
boundary layer. Then we will review the conventional 
variable structure control scheme and present the modi-
fied variable structure control theory. The effectiveness 
of the newly developed control scheme will be demon-
strated through the control of the WMR. We’ll show 
that the transient response during the reaching phase has 
been remarkably improved by the proposed control. 

II. HOME-MADE WMR 
The home-made WMR is shown in Fig.1. It consists 

of a vehicle with two driving wheels mounted on the 
same axis and a free front wheel. The motion and orien-
tation are achieved by independent actuators. Hence in 
the WMR model, we assume the coordinates of the 
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mass center of the WMR is located in the middle of the 
hind driving wheel. 

 
Fig.1. Home-made WMR 

◎ Dynamic Equations of a WMR 
The 2-D figure of a WMR is shown in Fig. 2. Fig. 3 

shows 2-D of the car motion. The dynamic equations 
are described as follows, 
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where lv  is the linear velocity and rv is the angle ve-
locity. 

Let ( , , )r r rx y   be the reference coordi-
nate, ( , , ) ( , , )e e e r r rx y x x y y       be the coordi-
nate errors and cos sin 0y x     be the non-
holonomic constraint. By mathematical processing, we 
have the error equations 
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where R
lv  is the reference linearly velocity and R

rv  is 
the reference angle velocity. If 1e  and 3e  converge to 
zero, the 2e  will also converge to zero. So we concern 
the stability of the error equations. 
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The object is to design lv  and rv such that 031  ee . 

 
Fig.2. 2-D of a wheeled mobile 

 

Fig.3. 2-D of the car motion

III. CONVENTIONAL VARIABLE STRUC-
TURE CONTROL 

Consider the double integrator given by 
 ( ) ( )y t u t  (4) 

Let the feedback control law be 
 ( ) ( )u t ky t   (5) 

where k is a strictly positive scalar. We have 
 yy kyy    (6) 

Integrating this expression gives the following relation-
ship between velocity and position 

 2 2y ky c   (7) 
where c is a strictly positive and constant value. 

Since y  and y  remain bounded for all time, the 
closed-loop systems are stable. For asymptotic stability, 
the control law of the form given in (5) is not appropri-
ate. Consider instead the control law 
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where 1 20 1k k   . Then the phase portrait must spi-
ral in towards the origin and an asymptotically stable 
motion result. Next, consider a second-order system 
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where the switching function is defined by 

 1 2 1

1 2

( , )
         0.5
s x x x

x x




 

 (11) 

The system structure varies along the switching 
lines: 1 0x   and 0  . Figure 4 shows the phase por-
trait of the subsystem under 14u x  . Similarly, Figure 
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5 shows the phase portrait of the subsystem under 
14u x . Evidently, both subsystems are unstable. How-

ever, the origin can be made asymptotically stable by 
the switching law, as shown in Fig. 6. Note that the 
phase portrait under variable structure control consists 
of a reaching mode during which trajectories starting off 

0s  move toward it and reach it in finite time, fol-
lowed by a sliding mode ( 05.0 11  xx  ) during 
which the motion will be confined to 0s . During the 
sliding mode, trajectory dynamics are of a lower order 
than the original mode. The sliding mode is a trajectory 
that is not inherent in either one of the two subsystems. 
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Fig.4. Phase portrait of an unstable focus 
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Fig.5. Phase portrait of an unstable saddle 
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Fig.6. Phase portrait of the VSC stable system 

IV. MODIFIED VARIABLE STRUCTURE 
CONTROL 

Consider a simple thn -order SISO nonlinear system 

 
( ) ( 1) ( 1)

( , ,..., ) ( , ,..., )
n n n

y f t y y g t y y u
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   (12) 
Assume that ˆf f f   , where f̂ is the known 

part and f is the uncertain part, which includes the 
internal noise bounded in in f F  . The object is to 
find a sliding control u such that the output y of (12) 
will approximately track a desired signal, dy  which is 
assumed to be thn -order continuously differentiable 
and all of its derivatives are uniformly bounded. Given 
the tracking error 
 ( ) ( ) ( )de t y t y t   (13) 

For any 0q  , define the following transformation 
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An thn -order tracking problem can be transformed 
into an equivalent 1st-order stabilization problem. It is 
easy to show that the control law 
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will result in a closed-loop system satisfying the reach-
ing condition: 
 ,ss s s     , (19) 
Provided  F , for some 0 . 

This controller ensures that starting from any initial 
state the error trajectory will reach the boundary 
layer, s    in finite time. 

V. SIMULATION RESULTS 
To illustrate the performance of the above, the WMR 

is considered, given as the section II. According to the 
notations given above, we assume initial values are cho-
sen as ),1,3(),,( 000  yx and expected values 
are )4/,0,0(),,(  rrr yx . By setting the parameters 
as ,1 y ,7y ,15 a  and .25a  

Figure 7 and figure 8 indicate the tracking errors vi
a CVSC and MVSC, respectively. 

VI. CONCLUSION 
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We have presented a modified variable structure con-
trol scheme in this paper for a WMR. Not only the con-
ventional variable structure control has exhibited good 
responses but also the proposed control law has shown 
to be capable of improving the transient response as 
well as the steady state response. Simulation results 
showed good responses to any initial conditions. 

0 5 10 15 20 25 30
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Time (sec)

T
he

 t
ra

ck
in

g 
er

ro
rs

e-y

e-x
e-theta

 
Fig.7. Tracking errors via CVSC 
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Fig.8. Tracking errors via MVSC 
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