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Abstract: Mixed-integer optimization problems belong to NP-hard combinatorial problems. Therefore, they are difficult
to search for the global optimal solutions. The mixed-integer optimization problems are always described by precise
mathematical programming models. However, many practical mixed-integer optimization problems inherit more or less
imprecise nature. Under this circumstance, if we take into account the flexibility of constraints and the fuzziness of
objectives, the original mixed-integer optimization problems can be formulated as fuzzy mixed-integer optimization
problems. Mixed-integer differential evolution (MIHDE) is an evolutionary search algorithm, and has been successfully
applied to many complex mixed-integer optimization problems. In this paper, a fuzzy mixed-integer mathematical
programming model is developed to formulate the fuzzy mixed-integer optimization problem. And then the MIHDE is
introduced to solve this fuzzy mixed-integer programming problem. Finally, the illustrative example shows that
satisfactory results can be obtained by the proposed method. This demonstrates that the MIHDE can effectively handle
the fuzzy mixed-integer optimization problems.
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I. Introduction
Many real-world optimization problems involve

integer or discrete design variables in addition to
continuous design variables. This kind of problems is
called mixed-integer optimization problems. Mixed-
integer optimization problems belong to NP-hard
combinatorial problems, therefore they are difficult to
search for the global optimal solutions. On the other
hand, the mixed-integer optimization problems are
always described by precise mathematical
programming models. However, many practical mixed-
integer optimization problems inherit more or less
imprecise nature. Under this circumstance, if we take
into account the flexibility of constraints and the
fuzziness of objectives, the original mixed-integer
optimization problems can be formulated as fuzzy
mixed-integer optimization problems.

In the fuzzy mixed-integer optimization problems,
the constraints and objectives are defined by fuzzy sets
and denoted as “fuzzy constraints”and “fuzzy goals”
[1]. Combined with fuzzy constraints, fuzzy goals and
fuzzy decision, a fuzzy mixed-integer optimization
problem can be transformed into a mixed-integer
optimization problem. Therefore, one can use a mixed-
integer optimization approach to solve such a mixed-
integer optimization problem.

Evolutionary algorithms (EAs) [2, 3] are powerful
search algorithms based on the mechanism of natural
selection. Unlike conventional search approaches, they
simultaneously consider many points in the search
space so as to increase the chance of global
convergence. Recently, EAs have exhibited promising
results for solving complex problems such as highly

nonlinear, non-differentiable and multi-modal
optimization problems [4]. Mixed-integer differential
evolution (MIHDE) [5] is an evolutionary algorithm. A
mixed coding is introduced in MIHDE to implement the
evolutionary process of continuous and integer
variables. The MIHDE has been successfully applied to
many complex mixed-integer optimization problems [5-
8].

In this paper, a fuzzy mixed-integer programming
model is developed to formulate the fuzzy mixed-
integer optimization problem. The MIHDE is
introduced to solve this fuzzy mixed-integer
programming problem. Finally, the illustrative example
show that satisfactory results can be obtained by the
proposed method. This demonstrates that the MIHDE
can effectively handle the fuzzy mixed-integer
optimization problems.

II. Fuzzy Mixed-Integer Mathematical
Programming

If we soften the rigid requirements of a mixed-
integer optimization problem, the mixed-integer
optimization problem can be stated by a fuzzy mixed-
integer programming model as follows:

)(min yx,
yx,

f (1)

subject to
ij mjg ,...,1,0~)( yx, (2)

where x represents an nC-dimensional vector of
continuous variables, y is a nI-dimensional vector of
integer variables, and the symbol “~ ”respectively
denote the softened or fuzzy versions of constraints

)( yx,jg . It means that the minimized objective
function can be further improved with properly
softened constraints.
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The fuzzy goal and fuzzy constraints can be
quantified by the membership functions. Here a linear
membership function such as triangular function is
employed. The membership functions are represented
by ),( yxf and ),( yx

jg as defined by equations

(3) and (4).
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where 0f and 0
jg are respectively denote the values

of f and
jg such that the grades of the membership

functions ),( yxf and ),( yx
jg are 0, and 1f and

1
jg represent the values of f and

jg such that the
grades of the membership function ),( yxf and

),( yx
jg are 1.

The fuzzy decision ),( yxD is expressed as









 
mi

gfD j
1

),()},({),( yxyxyx  (5)

If we follow the fuzzy decision of Bellman and
Zadeh [9], the optimal solution )( ** y,x of fuzzy
decision ),( yxD can be selected by maximizing the
smallest membership function such that

)},(,),,(),,({minmax),(
1

** yxyxyxyx
miggfD   (6)

By introducing the auxiliary variable , the max-
min problem can be transformed into the following
mixed-integer nonlinear programming (MINLP)
problem:

maximize  (7)
subject to ),( yxf (8)

ig mj
j

,...,1),(  yx, (9)

In order to solve this MINLP problem effectively,
the MIHDE algorithm is applied to solve this problem
and find the maximizing decision. The details of
MIHDE are described in the following section.

III. Mixed-Integer Hybrid Differential
Evolution

Let us consider a general MINLP problem as
follows:

)(min yx,
yx,

f (10)

x x xL U 
y y yL U 

where x represents an nC-dimensional vector of real-
valued variables, y is an nI-dimensional vector of
integer-valued variables, and )( LL y,x and )( UU y,x
are the lower and upper bounds of the corresponding
decision vectors.

The procedure of MIHDE includes the following 5
steps.

1) Representation and Initialization

MIHDE uses
pN decision vectors

}){(}{ i
GGG

i y,xz  ,
pNi ,...,1 to denote a population

of
pN individuals in the G-th generation. The decision

vector (chromosome),
i)( yx, , is represented as

),...,,...,,,...,,...,( 11 injiiinjii IC
yyyxxx . The decision

variables (genes), x ji
and y ji

, are directly coded as
real-valued and integer-valued numbers. The
initialization process generates

pN decision vectors

i)( yx, randomly, and should try to cover the entire
search space uniformly as in the form:

  p
LLUU

i
LL

i Ni ,,1,)}(){()()( 00  y,xy,xy,xy,x 
(11)

where    i i i i n nC I
 Diag ,( , , ), , ,1 2  is a diagonal

matrix, the diagonal elements ( , , ), , ,  i i i n nC I1 2 , 

are random numbers in the range 0 1, , the other
elements are zero, and the rounding operator
 )}(),( LU

i
LU

i yybxxa   in (11) is defined
as ])[INT,( ba in which the operator ][INT b is
expressed as the nearest integer-valued vector to the
real-valued vector b.

2) Mutation

The i-th mutant individual  iGG v,u is obtained by
the difference for two random individuals as expressed
in the form

  
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)()()()(
G
l

G
km

G
l

G
kmp

GG

l
GG

k
GG

mp
GG

i
GG

ρρ

ρ

yyxxy,x

y,xy,xy,xv,u





(12)
where random indices

pNlk ,,1,  are mutually
different. The operator )](INT[ G

l
G
km yyb  in (12)

is to find the nearest integer vector to the real vector b.
The mutation factor m

is a real random number
between zero and one. This factor is used to control the
search step among the direction of the differential
variation

l
GG

k
GG )()( y,xy,x  .

3) Crossover

In crossover operation, each gene of the i-th
individual is reproduced from the mutant vector

i
GG )( v,u = ),,,,,,,( 2121

G
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G
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G
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G
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i IC

vvvuuu  and the
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where the crossover factor c 0,1 is a constant and
the value can be specified by the user.

4) Evaluation and Selection
The operation includes two evaluation phases. The

first phase is performed to produce the new population
in the next generation as (15). The second phase is used
to obtain the best individual as (16).

)}),((),),(({argmin)( 1111
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(16)
where

b
GG )( 11  y,x is the best individual with the

smallest objective function value.

5) Migration
In order to increase the exploration of the search

space, a migration operation is introduced to generate a
diversified population. Based on the best individual
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the j-th gene of the i-th individual can be diversified by
the following equations:
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(18)
where 1 and 2 are the random numbers in the
range [0,1].

The migration operation in MIHDE is performed only
if a measure for the population diversity is not satisfied,
that is when most of individuals have clustered together,
the migration has to be actuated to make some
improvements. In this study, we propose a measure
called the population diversity degree  to check
whether the migration operation should be performed.
In order to define the measure, we first introduce the
following gene diversity index for each real-valued
gene x ji

G1 and for each integer-valued gene yki
G1 ,
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where dx ji
and dy ji

are the gene diversity indices
and 2 0 1[ , ] is a tolerance for real-valued gene
provided by the user. According to (19) and (20), we
assign the j-th gene diversity index for the i-th
individual to zero if this gene clusters to the best gene.
We now define the population diversity degree  as a
ratio of total diversified genes in the population. From
(19) and (20) we have the population diversity degree
as
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From equation (19), (20) and (21), the value of 
is in the range [0,1]. Consequently, we can set a
tolerance for population diversity, 1 0 1 , , to assess
whether the migration should be actuated. If  is
smaller than 1 , then MIHDE performs the migration
to generate a new population to escape a local solution.
Contrary, if  is not less than 1 , then MIHDE
suspends the migration operation to keep a constant
search direction to a target solution.

IV. Computational Example
Consider a design problem of pressure vessel, as

presented by Sandgren [10], is shown in Figure 1.

Figure 1. Pressure Vessel design.

The design variables are the dimensions required for the
specifications of the vessel, i.e.

),,,()( 2121 yyxxyx, .
The objective function is the combined costs of

material, forming and welding of the pressure vessel.
The constraints are set in accordance with the
respective ASME codes. The mixed-integer
optimization problem is expressed as:
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Using the MIHDE algorithm to solve this mixed-integer
optimization problem, the obtained optimal solution is

)1012,,4069.221,8754.38(),,,()( 2
**

1
*

2
*

1
**  yyxxy,x ,

3198.6521)( ** y,xf
Instead of giving the crisp values for this mixed-

integer optimization problem, the fuzzy goal and the
fuzzy constraints are described in Table 1.

Table 1. Fuzzy goal and fuzzy constraints.
0f

or
0

jg

1f
or

1
jg

)( yx,f 0.62000 f 0.65001 f

)(1 yx,g 0.50
1 g 0.51

1 g
)(2 yx,g 0.50

2 g 0.51
2 g

)(3 yx,g 0.50
3 g 0.51

3 g

)(4 yx,g 0.50
4 g 0.51

4 g

For this fuzzy mixed-integer optimization problem, the
obtained optimal solution by MIHDE is

)1012,,96.10141,6027.40(),,,()( 2
**

1
*

2
*

1
**  yyxxy,x ,

6731.6350)( ** y,xf ,
9664.4

From computational result, the cost of pressure
vessel can be decreased through the fuzzy programming
for the original mixed-integer optimization problem.
This implied that the cost function can be further
improved if the constraints are softened to a more
favorable degree.

V. Conclusions
In this paper, a fuzzy mixed-integer mathematical

programming model is developed to formulate the
fuzzy mixed-integer optimization problem. And then
the MIHDE is introduced to solve this fuzzy mixed-
integer programming problem. Finally, the illustrative
example shows that satisfactory results can be obtained
by the proposed method. This demonstrates that the
MIHDE can effectively handle the fuzzy mixed-integer
optimization problems.
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