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Abstract 
In this paper we try to describe how the Modular 

Interactive Tiles System (MITS) can be a valuable tool 

for introducing students to interactive parallel and 

distributed processing programming. This is done by 

providing an educational hands-on tool that allows a 

change of representation of the abstract problems related 

to designing interactive parallel and distributed systems. 

Indeed, MITS seems to bring a series of goals into the 

education, such as parallel programming, distributedness, 

communication protocols, master dependency, software 

behavioral models, adaptive interactivity, feedback, 

connectivity, topology, island modeling, user and multi-

user interaction, which can hardly be found in other tools. 

Finally, we introduce the system of modular interactive 

tiles as a tool for easy, fast, and flexible hands-on 

exploration of these issues, and through examples show 

how to implement interactive parallel and distributed 

processing with different software behavioural models 

such as open loop, randomness based, rule based, user 

interaction based, AI and ALife based software. 

 

Introduction 
Parallel and distributed processing has been an important 

subject within computer science and artificial intelligence 

for decades, and is one of the major focus points in most 

computer science curricula and theoretical educational 

textbooks. It is normally viewed as an important subject 

to teach computer science and engineering students, since 

numerous applications and systems are based on the 

principle of parallel and distributed processing, including 

the Internet, cloud computing, parallel computers, multi-

agent systems, swarm intelligence, etc. There are 

numerous important issues related to parallel and 

distributed processing that a student has to learn about. 

Within algorithmics, it is important to learn to what 

extend parallelism can improve efficiency and what kind 

of algorithms can exploit parallelism. This leads, for 

instance, to a demand for knowing about hierarchical and 

functional decomposition of problems. An educational 

tool for this kind of algorithmics learning should allow 

students to learn about when to utilise shared variables 

(e.g. in the master) and distributed variables, when to use 

a scheduler (in the master), how to use semaphores for 

critical sections, and for instance allow students to 

confront the mutual exclusive problem [1]. Also, general 

computer science learning about operating systems 

demands learning about distributed systems, and the 

issues related to topology, communication, event based 

control, prevention of deadlocks, data transfer, etc. (e.g. 

[2]). Obviously, learning about artificial intelligence also 

demands learning about distributed systems for learning 

about artificial neural networks, evolutionary 

computation, multi-agent systems, swarm intelligence, 

etc., including also learning of artificial life and robotics 

(e.g. multi-robot systems). 

A number of these computer science themes can appear 

quite abstract to the engineering and computer science 

student. There is clearly a need to have an educational 

tool that allows the students to confront these themes in a 

very concrete manner. We suggest that the best way to 

learn about these abstract issues is through direct hands-

on problem solving, following the pedagogical principles 

of Piaget [3] known as constructionism [4, 5, 6] and 

guided constructionism in the computer science literature 

[7]. We combine this with an approach of trying to 

contextualise IT training for students by allowing them to 

work with building blocks [8]. Numerous experiments 

have shown that the hands-on, problem-solving, 

constructionism approach allow the learner to confront 

abstract, cognitive problem solving in a simpler manner 

through the physical representation. The feature that 

different representations (e.g. physical representation) 

can cause dramatically different cognitive behaviour is 

referred to as “representational determinism” [9]. In fact, 

Zhang and Norman [10] propose a theoretical framework 

in which internal representations and external 

representations form a "distributed representational 

space" that represents the abstract structures and 

properties of the task in "abstract task space" (p. 90). 

They developed this framework to support rigorous and 
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formal analysis of distributed cognitive tasks and to assist 

their investigations of "representational effects [in which] 

different isomorphic representations of a common formal 

structure can cause dramatically different cognitive 

behaviours" (p. 88). “External representation are defined 

as the knowledge of the structure in the environment, as 

physical symbols, objects, or dimensions (e.g., written 

symbols, beads of abacuses, dimensions of a graph, etc.), 

and as external rules, constraints, or relations embedded 

in physical configurations (e.g., spatial relations of 

written digits, visual and spatial layout of diagrams, 

physical constraints in abacuses, etc.)” (p. 180) [9].  

For the distributed processing education, we suggest 

using interactive parallel and distributed processing that 

allows the student to easily represent, interact with and 

create their own parallel and distributed processing 

system in a physical manner. Here, we will divide the 

work into some of the sub-problems that the students will 

have to confront and learn about through practical 

implementations. These sub-problems include 

distributedness, master dependency, software behavioural 

models, adaptive interactivity, feedback, connectivity, 

topology, island modeling, and user interaction. 

Indeed, designing software for interactive parallel and 

distributed systems means moving away from the 

traditional routes and to face another way of developing 

algorithms. This other programming paradigm demands 

the programmer to get into a new "state of mind", which 

is a most difficult thing to do. It is therefore important to 

have a clear idea of the concepts and definitions 

underlying this paradigm of interactive parallel and 

distributed processing:  

 

Interactivity 

For interactivity, here we intend a physical and tangible 

interaction. The physical parallel and distributed system 

enables the experience of physically manipulating objects 

and the material representations of information. The 

technology embeds physical, conceptual and cultural 

constraints. The mapping between the physical 

affordances of the objects with the digital components 

(different kinds of output and feedback) is a design and 

technological challenge, since the physical properties of 

the objects serve as both representations and controls for 

their digital counterparts [11]. Here, we make the digital 

information directly manipulatable, perceptible and 

accessible through our senses by physically embodying 

it. 

While playing with the system, the user can take 

advantage of the distinct perceptual qualities of the 

system and this makes the interaction tangible, 

lightweight, natural and engaging. Interacting with a 

physical parallel and distributed system may mean 

jumping over, pushing, assembling, touching physical 

objects and experiment a dialogue with the system in a 

very direct and non-mediated way, and hence it is viewed 

as highly suitable e.g. for student training. Undeniably, 

this allows for a direct hands-on experience and learning. 

 

Parallel and Distributed 

A computational process is called distributed [12] when a 

single computational atom is on one side autonomous 

and on the other insufficient to determine the desired 

outcome. Therefore a computational process will be 

called distributed when two or more computers – 

communicating through any possible network - will 

contribute to accomplish the very same task by sharing 

different roles in a computational problem or process. 

Besides that, whenever considering a distributed 

(computational) process, it is necessary to define the 

level of parallel vs. serial computational flow that the 

system should perform, as well as to define the 

“computational group” characteristics. The Parallel 

computing is a form of computation in which many 

calculations are carried out simultaneously, operating on 

the principle that large problems can often be divided 

into smaller ones, which are then solved concurrently ("in 

parallel"). There are several different forms of parallel 

computing: bit-level, instruction level, data, and task 

parallelism. Since the modular interactive tiles system is 

mostly dedicated to the task parallelism problem it tends 

to run distributed processes in, at least, three different 

ways: Fully-Distributed, Semi-Distributed or 

Centralized. 

 

Modular Interactive Tiles System 
Under an educational point of view what is really needed, 

as well as would be a real additional value, is a tool that 

allows for investigating and understanding parallel and 

distributed processing meanwhile stressing the user 

and/or multi-user interactivity component. One 

possibility is the Modular Interactive Tiles System 

(MITS) may provide novel programmers with such a tool 

and approach, since the system is based on robotic 

modules with certain properties: Each robotic module has 

a physical expression and is able to process and 

communicate with its surrounding environment. The 

communication with the surrounding environment is 

through communication to neighbouring robotic modules 

and/or through sensing or actuation. A modular robot is 

constructed from many robotic modules. 

The MITS approach inherits the behaviour-based robotics 

methods [13] and exploits it with the belief that 

behaviour-based systems can include not only the 

coordination of primitive behaviours in terms of control 

units, but also include coordination of primitive 

behaviours in terms of physical control units. We, 
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therefore, imagine a physical module being a primitive 

behaviour. Thereby, the physical organisation of 

primitive behaviours will (together with the interaction 

with the environment) decide the overall behaviour of the 

system. Hence, in a similar way to the control of robot 

behaviours by the coordination of primitive behaviours, 

we can imagine the overall behaviour of a robotic artefact 

to emerge from the coordination of a number of physical 

robotic modules that each represents a primitive 

behaviour, eventually opened to single/multi user-

interaction. 

The modular interactive tiles can attach to each other to 

form the overall system. The tiles are designed to be 

flexible and in a motivating way to provide immediate 

feedback based on the users’ physical interaction, since 

following design principles for modular playware [14]. 

 

 
Fig. 1. Modular tiles used for feet or hands interaction. 

 

Each modular interactive tile has a quadratic shape 

measuring 300mm*300mm*33mm – see Fig. 1. It is 

moulded in polyurethane. In the center, there is a 

quadratic dent of width 200mm which has a raised 

circular platform of diameter 63mm in the centre. The 

dent can contain the printed circuit board (PCB) and the 

electronic components mounted on the PCB, including an 

ATmega 1280 as the main processor in each tile. At the 

center of each of the four sides of the quadratic shape, 

there is a small tube of 16mm diameter through which 

infra-red (IR) signals can be emitted and received (from 

neighboring tiles). On the back of a tile there are four 

small magnets. The magnets on the back provide 

opportunity for a tile to be mounted on a magnetic 

surface (e.g. wall). Each side of a tile is made as a jigsaw 

puzzle pattern to provide opportunities for the tiles to 

attach to each other. The jigsaw puzzle pattern ensure 

that when two tiles are put together they will become 

aligned, which is important for ensuring that the tubes on 

the two tiles for IR communication are aligned. On one 

side of the tile, there is also a small hole for a charging 

plug (used for connecting a battery charger), including an 

on/off switch.  

There is a small groove on the top of the wall of the 

quadratic dent, so a cover can be mounted on top of the 

dent. The cover is made from two transparent satinice 

plates on top of each other, with a sticker in between as 

visual cover for the PCB. 

A force sensitive resistor (FSR) is mounted as a sensor 

on the center of the raised platform underneath the cover. 

This allows analogue measurement on the force exerted 

on the top of the cover.  

On the PCB, a 2 axis accelerometer (5G) is mounted, e.g. 

to detect horizontal or vertical placement of the tile. Eight 

RGB light emitting diodes (LED SMD 1206) are 

mounted with equal spacing in between each other on a 

circle on the PCB, so they can light up underneath the 

transparent satinice circle. 
 

 
Fig. 2. PCB and components of a modular interactive tile. 

 

The modular interactive tiles are individually battery 

powered and rechargeable. There is a Li-Io polymer 

battery (rechargeable battery) on top of the PCB. A fully 

charged modular interactive tile can run continuously for 

approximately 30 hours and takes 3 hours to recharge. 

The battery status of each of the individual tiles can be 

seen when switching on each tile and is indicated by 

white lights. When all eight lights appear the battery is 

fully charged and when only one white light is lit, the tile 

needs to be recharged. This is done by turning of the tiles 

and plugging the intelligent charger into the DC plug 

next to the on/off switch to recharge each tile.  

On the PCB, there are connectors to mount an XBee 

radio communication add-on PCB, including the 

MaxStream XBee radio communication chip. Hence, 

there are two types of tiles, those with a radio 

communication chip (master tiles) and those without 

(slave tiles). The master tile may communicate with the 

game selector box and initiates the games on the built 

platform. Every platform has to have at least one master 

tile if communication is needed e.g. to game selector box 

or a PC.  

 
Fig. 3. Assembly of the modular interactive tiles as a simple 

jigsaw puzzle. 
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With these specifications, a system composed of modular 

interactive tiles is a fully distributed system, where each 

tile contain processing (ATmega 1280), own energy 

source (Li-Io polymer battery), sensors (FSR sensor and 

2-axis accelerometer), effectors (8 colour LEDs), and 

communication (IR transceivers, and possibly XBee 

radio chip). In this respect, each tile is self-contained and 

can run autonomously. The overall behavior of the 

system composed of such individual tiles is however a 

result of the assembly and coordination of all the tiles.     

The modular interactive tiles can easily be set up on the 

floor or wall within one minute. The modular interactive 

tiles can simply attach to each other as a jigsaw puzzle, 

and there are no wires. The modular interactive tiles can 

register whether they are placed horizontally or 

vertically, and by themselves make the software games 

behave accordingly. 

 

 
Fig. 4. Physical interaction with the modular interactive tiles 

placed on the ground. 

 

Also, the modular interactive tiles can be put together in 

groups (i.e.: tiles islands), and the groups of tiles may 

communicate with each other wireless (radio). For 

instance, a game may be running distributed on a group 

of tiles on the floor and a group of tiles on the wall, 

demanding the user to interact physically with both the 

floor and the wall. 

 

Theoretical Aspects of Interactive Parallel 

and Distributed Processing 

Interactive parallel and distributed systems programming 

demands the student programmer to shape specific 

abilities, and we believe that the MITS can simplify this 

learning process. We will present a number of the 

interactive parallel and distributed sub-problems that a 

student needs to learn about, and we believe MITS 

provides an open tool for facing all the aspects of 

programming both low and high level programming or 

front and back end representation. 

 

Classical parallel and distributed processes subtasks 

Coding parallel and distributed processes stress 

programming and understanding of different levels, such 

as: physical level (i.e.: bit transmission); data link level 

(i.e.: packages, transmission errors and recovery); 

network level (i.e.: addresses and packages destination); 

transport level (i.e.: messages exchanges between clients 

and master/s); session level (i.e.: defining and 

implementing sessions in terms of priorities and process-

to-process communication); representation level (i.e.: 

working on data-format differences); application level 

(i.e.: the end-user interaction and feedback); and to 

understand and implement solutions for robustness (i.e.: 

errors diagnosis and recovery); reconfiguration (i.e.: 

modules assembling); unreliable  communication (i.e.: 

data loss, duplication and corruption); parallelism and 

concurrency (i.e.: language non-deterministic side-

effects); fixed and expanding parallelism (i.e.: modifying 

the number of involved processors). 

It is also essential when teaching information distribution 

to work on problems such as system connection (i.e.: 

total vs. partial connection); token-passing (i.e.: how to 

share and act on critical information); deadlock 

prevention (i.e.: wait-die, wound-wait, etc.); memory 

sharing (i.e.: how to locate the physical memory of the 

distributed system); topology (i.e.: ordinary and complex 

topology algorithms, initial vs. run-time topology 

building, etc.); processes transfer (i.e.: distributing the 

work-load, speeding up calculation, hardware  and 

software specialization amongst the system modules); 

centralized vs. hierarchy vs. distributed approaches (i.e.: 

leaded or unleaded information flow); and run-time 

adaptation (i.e.: adapting the system re/actions on-the-

fly).  

Besides all of the above “classical” sub-problems of 

computer science, our platform forces the educational 

session to face other aspects that software designers 

should deal with when learning parallel and distributed 

processing. Such sub-tasks include local and global 

connectivity, hardware multifaceted topologies, 

interactivity and adaptive interactivity, and multimodal 

feedback. 

 

Connectivity 

To materialize a proper interactive parallel and 

distributed platform, the modular interactive tiles system 

has to implement both a local connection system - 

through which the hardware cells communicate to the 

neighbourhood and propagate such information from side 

to side – and a global connection device – through which 

to connect with neighbour platforms and any external 

tool. 

 

Hardware Multifaceted Topologies  

Since the modular interactive tiles system implies the use 

of run-time de/attachable modules, the emphasis on 

hardware/software topology is quite strong and it 

demands a big effort to comprehend the programming 
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and dealing with such structures. In our model we were 

able to identify three specific subtypes of topologies:  

1. Regular, that is a one-block (i.e. any given group of 

hardware cells attached in a contiguous way and sharing 

a single master cell) platform with modules attached in a 

squared or rectangular shape; 

2. Irregular, which is a one-block platform, which can be 

arranged in any desired shape. Nevertheless hardware 

cells have to be continuous (i.e. the assembling does not 

reveals discontinuity and there is not any isolated cell or 

group of cells); 

3. Islands Configurations, that is a platform made with 

two or more one-blocks (i.e. as defined above in point 1, 

and 2). It makes no difference whether master cells 

communicate amongst each others, through an external 

device, or do not communicate at all.  

 

Interactivity  

Implementing software for modular interactive tiles 

implies designing, or at least dealing with a quite relevant 

interactive scenario, since in most cases the use of the 

software itself relies on the users’ physical and 

continuous action. The software designer will have to 

deal with completely different requirements accordingly 

to single-user or multi-user targeted software. Often, the 

software designer will also have to hypothesize a large 

variety of behavioural situations, even including 

situations (according to our personal experience) where a 

single-user platform will be used by many users, or a 

multi-user software will be run by a single user. 

 

Adaptive Interactivity 

The way we approach interaction in such a modular and 

distributed model leads beyond the classic idea of 

human-machine interaction (HMI), and is of fundamental 

importance since it prospects and applies - under both 

physical and cognitive circumstances – user adaptation 

and user adaptivity. First of all, our model being 

architecturally reconfigurable – eventually run-time 

reconfigurable – represents by itself the essence of 

adaptation. In addition, being focused on users’ physical 

action, such a system can be easily tailored to users’ 

activity, either in real time or in the long run. To reach 

such a goal, modular interactive tiles can be programmed 

using many different strategies that also depend on the 

quality and quantity of feedback the software designer is 

willing to exchange with the users. (Feedback and 

multimodal feedback will be introduced in the next 

paragraph). Indeed, in more then one case we showed 

[15, 16] that using modular interactive tiles we could 

detect some of the users’ characteristics, and therefore 

adapt the software execution to those. Last but not the 

least, in further tests it has been shown that by capturing 

the users’ provisory attitude and adapting the software 

execution to that it is possible, in some cases, to 

eventually modify the users’ behaviour itself [16]. 

 

Multimodal Feedback 

When talking about HMI we kind of committed 

ourselves to the "how you give is more important of what 

you give" motto. Therefore, in recent years we pushed 

our research towards software and tools that can both 

give and get feedbacks from the user(s). 

When developing software for modular interactive tiles 

we constantly try to provide the user with an immediate 

feedback (e.g. LED, experience report) as well a delayed 

or long term feedback (e.g. adaptivity, documentation 

software). For the immediate feedback from modular 

interactive tiles we use light (LED) configuration or 

colours. In addition to that, anytime there is a need for a 

stronger or a more complex or long-run “signal”, we 

interface the modular interactive tiles with external 

devices in a layered mode, where each layer of feedback 

can be added/removed freely on top of each other This is 

what we call Layered Multi-modal Feedback [17]. The 

external devices we use can be “passive” as vision 

oriented feedback (e.g. screen, projector, etc.), sound 

oriented feedback (e.g. loud speakers, buzzers, etc.), or 

“active” such as computational devices that through an 

external communication (e.g. radio and internet) run an 

analysis or link the user action to specific databases. 

In conclusion, to manage and teach the many features of 

parallel and distributed programming we need to run on a 

system, which is robust, reliable and easily 

reconfigurable. This is where we believe that the MITS 

can express a certain degree of efficiency, besides of 

being ideal in shifting the level of representation from the 

very abstract representation to an empirical 

representation. Therefore, in the following paragraph we 

provide examples, which attempt to show how one can 

access the above-described aspects in a fast, 

comprehendible and easily generalizable way. 

 

Implementations Examples  
As a first step the teacher/tutor should introduce students 

to the hardware platform (Figures 2, 3, and 4) and ask the 

class to implement all the needed protocols for obtaining 

a robust, efficient and reliable parallel and distributed 

system. This would require and encourage students to 

face the basic algorithms and protocols that the subtasks 

of parallel and distributed systems need (e.g.: physical 

level, data link level, network level, transport level, 

session level, representation level, etc.). 

Once such a start-up system is obtained (from the 

students work or from the pre-made system), a second 

step could be, for example, testing the system by working 

on problems such as application, robustness, 
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communication, system connection, token-passing, 

deadlock prevention, parallelism, reconfiguration, 

memory sharing, topology, and process transferring.  

The MITS model is ideal for implementing all of the 

above challenges since the hardware components are 

minimalistic and the distributed system complexity can 

be developed and tested in a quick and easy manner 

(Figure 5).   

 
Fig. 5. Examples of different topologies 

 

Once students have reached this new level of 

competencies, the tutor can drive their attention to a 

higher level of representation and ask them to implement 

end-user interaction based applications, such as in the 

following examples. 

 

Games Examples. 

Once a specific topology is chosen, the software 

engineering student can implement and run a large 

variety of tasks (here we start by considering examples to 

apply to a semi-distributed, single user application on a 

regular topology platform). 

 

Open Loop and Randomness based software. 

The simplest case, a naïve one, could be the following 

Easy Game (Figure 6).  

 

 
Fig 6. Easy Game, a sequence of 7 states 

 

In Easy Game the light is “passed” from one module to 

either an adjacent or a distant one (i.e. with a predefined 

open loop algorithm or randomness based one). In both 

the above cases the software cycling is endless and we 

need to introduce the interactivity level (e.g. the game 

finishes when the user hit the lighted tile) to stop it, and 

by doing so transforming the two into very young 

children games. When the user press a tile, then the 

dynamics somehow stops and the tiles freeze in a 

particular pattern, until the user presses the lighted tile 

again, and the light shift sequence will start again. 

 

Rule(s) based software. 

One step further is a rule-based software characterized by 

the fact that pattern sequence - which can either be 

predefined or random based – is governed by a specific 

rule or set of rules. The simplest case we can think of is 

the one where, given any machine state and configuration 

(e.g. two tiles) those states which are ON turns OFF and 

those states which are OFF turns ON. Of course, we can 

design a much more complex setting but, essentially, this 

is the logic that is used in rule based software.     

On the other hand, when introducing the interaction 

element in rule based software we obtain a more dynamic 

scenario denoted by the fact that the rules and users are 

coactive and contribute step by step to the system state. 

Such a situation can be clearly observed in the American 

Football game (Figure 7).  

 

 
Fig. 7. American Football, a sequence of 5 states 

 

This is one-against-one game where, given a, say, 5 

(width) per 2 (height) cluster of modular interactive tiles, 

such interactive software is made so that at the beginning 

of the game the platform extremes appear activated (i.e. 

light on) and of two different colours (i.e. blue in one 

extreme and red in the other extreme). By squeezing the 

tiles, the user “pushes” the color/activation forward in the 

row (i.e. switches off the squeezed tile and switches on 

the adjacent one towards the opponent). The user who 

first pushes its color to the opposite extreme of the game 

platform wins the game. 

 

User-interaction based software. 

The user-interaction based program is, per se, an 

interactive software conception in which the user directly 

contributes to the next machine state (i.e. tiles color or 

activation). Such a software model is quite similar to the 

interactive version of the rule based software – since the 

user itself cannot determine the machine states if not 

aided by some underlying algorithm. It only differs from 

that in terms of strain used on increasing the user role and 

contribution to the next machine state, and the attempt to 

reduce the rule component. A good example could be the 

Final Countdown game (Figure 8). In the Final 

Countdown the tiles platform can vary both in aspect and 

size, since the game components behave all in the very 

same way. It consists of a number of tiles that, when the 

game is initiated, all of the tiles are fully lighted (i.e. any 

color would do). After initialization and with a given 

interval (e.g. one second) they all start to “fade-out” 

switching OFF one of their 8 light bulbs after the other in 

a clockwise sequence. If one of them gets completely 
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OFF the game is over. To restore a single tile to the 

initial state, the user has to squeeze it. The wider is the 

platform the more important becomes the strategy users 

bring into play to keep the game alive. 

 

 
Fig. 8. Final Countdown, a sequence of 6 states 
 

A.I. and ALife based software. 

The A.I. and ALife based software are, again, a 

complication of what we defined as rule based systems. 

Essentially they rely on the same principles, both for the 

autonomous and the interactive version, although the 

quality of the computational experience is much higher in 

terms of software behavioral equality/variety, 

un/predictability, and etc. Further, since modular 

interactive tiles tend to resemble pixel-made structures it 

seems to easily incorporate a consistent number of 

classical and modern A.I. paradigms. A good example is 

the Cellular Automata (i.e. CA), a discrete model used in 

computability theory and many different fields, which 

consists of a regular grid of cells, each one with a finite 

number of possible states (e.g. ON, OFF), that can 

change their state accordingly with their neighborhood 

activation states [18]. We, first, implemented one of the 

most famous CA algorithms, the Conway’s Game of Life 

on modular interactive tiles and, after that, added the 

interactive aspect.  

 

Conclusion 
We developed the concept of interactive parallel and 

distributed processing in order to put focus on the 

physical interaction with parallel and distributed system, 

and to highlight the many challenges that the student 

programmers might face in understanding and designing 

interactive parallel and distributed systems.  

It is our belief that a system like the modular interactive 

tiles is a tool for easy, fast, and flexible learning and 

exploration of these challenges, e.g. as shown with the 

examples of how to implement interactive parallel and 

distributed processing with different software behavioral 

models such as open loop, randomness based, rule based, 

user interaction based, AI and ALife based software.  

Indeed, MITS provides an educational hands-on tool that 

allows a change of representation of the abstract 

problems related to designing interactive parallel and 

distributed systems, so that students can learn about 

classical and modern aspects of parallel and distributed 

systems. 
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