

An Educational Tool for Interactive Parallel and Distributed Processing

Luigi Pagliarini1,2 Henrik Hautop Lund1

1
Centre for Playware, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

2
Academy of Fine Arts of Bari, Via Gobetti, 8. 70125 Bari, Italy

luigi@artificialia.com hhl@playware.dtu.dk

www.playware.dk

Abstract
In this paper we try to describe how the Modular

Interactive Tiles System (MITS) can be a valuable tool

for introducing students to interactive parallel and

distributed processing programming. This is done by

providing an educational hands-on tool that allows a

change of representation of the abstract problems related

to designing interactive parallel and distributed systems.

Indeed, MITS seems to bring a series of goals into the

education, such as parallel programming, distributedness,

communication protocols, master dependency, software

behavioral models, adaptive interactivity, feedback,

connectivity, topology, island modeling, user and multi-

user interaction, which can hardly be found in other tools.

Finally, we introduce the system of modular interactive

tiles as a tool for easy, fast, and flexible hands-on

exploration of these issues, and through examples show

how to implement interactive parallel and distributed

processing with different software behavioural models

such as open loop, randomness based, rule based, user

interaction based, AI and ALife based software.

Introduction
Parallel and distributed processing has been an important

subject within computer science and artificial intelligence

for decades, and is one of the major focus points in most

computer science curricula and theoretical educational

textbooks. It is normally viewed as an important subject

to teach computer science and engineering students, since

numerous applications and systems are based on the

principle of parallel and distributed processing, including

the Internet, cloud computing, parallel computers, multi-

agent systems, swarm intelligence, etc. There are

numerous important issues related to parallel and

distributed processing that a student has to learn about.

Within algorithmics, it is important to learn to what

extend parallelism can improve efficiency and what kind

of algorithms can exploit parallelism. This leads, for

instance, to a demand for knowing about hierarchical and

functional decomposition of problems. An educational

tool for this kind of algorithmics learning should allow

students to learn about when to utilise shared variables

(e.g. in the master) and distributed variables, when to use

a scheduler (in the master), how to use semaphores for

critical sections, and for instance allow students to

confront the mutual exclusive problem [1]. Also, general

computer science learning about operating systems

demands learning about distributed systems, and the

issues related to topology, communication, event based

control, prevention of deadlocks, data transfer, etc. (e.g.

[2]). Obviously, learning about artificial intelligence also

demands learning about distributed systems for learning

about artificial neural networks, evolutionary

computation, multi-agent systems, swarm intelligence,

etc., including also learning of artificial life and robotics

(e.g. multi-robot systems).

A number of these computer science themes can appear

quite abstract to the engineering and computer science

student. There is clearly a need to have an educational

tool that allows the students to confront these themes in a

very concrete manner. We suggest that the best way to

learn about these abstract issues is through direct hands-

on problem solving, following the pedagogical principles

of Piaget [3] known as constructionism [4, 5, 6] and

guided constructionism in the computer science literature

[7]. We combine this with an approach of trying to

contextualise IT training for students by allowing them to

work with building blocks [8]. Numerous experiments

have shown that the hands-on, problem-solving,

constructionism approach allow the learner to confront

abstract, cognitive problem solving in a simpler manner

through the physical representation. The feature that

different representations (e.g. physical representation)

can cause dramatically different cognitive behaviour is

referred to as “representational determinism” [9]. In fact,

Zhang and Norman [10] propose a theoretical framework

in which internal representations and external

representations form a "distributed representational

space" that represents the abstract structures and

properties of the task in "abstract task space" (p. 90).

They developed this framework to support rigorous and

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 43

formal analysis of distributed cognitive tasks and to assist

their investigations of "representational effects [in which]

different isomorphic representations of a common formal

structure can cause dramatically different cognitive

behaviours" (p. 88). “External representation are defined

as the knowledge of the structure in the environment, as

physical symbols, objects, or dimensions (e.g., written

symbols, beads of abacuses, dimensions of a graph, etc.),

and as external rules, constraints, or relations embedded

in physical configurations (e.g., spatial relations of

written digits, visual and spatial layout of diagrams,

physical constraints in abacuses, etc.)” (p. 180) [9].

For the distributed processing education, we suggest

using interactive parallel and distributed processing that

allows the student to easily represent, interact with and

create their own parallel and distributed processing

system in a physical manner. Here, we will divide the

work into some of the sub-problems that the students will

have to confront and learn about through practical

implementations. These sub-problems include

distributedness, master dependency, software behavioural

models, adaptive interactivity, feedback, connectivity,

topology, island modeling, and user interaction.

Indeed, designing software for interactive parallel and

distributed systems means moving away from the

traditional routes and to face another way of developing

algorithms. This other programming paradigm demands

the programmer to get into a new "state of mind", which

is a most difficult thing to do. It is therefore important to

have a clear idea of the concepts and definitions

underlying this paradigm of interactive parallel and

distributed processing:

Interactivity

For interactivity, here we intend a physical and tangible

interaction. The physical parallel and distributed system

enables the experience of physically manipulating objects

and the material representations of information. The

technology embeds physical, conceptual and cultural

constraints. The mapping between the physical

affordances of the objects with the digital components

(different kinds of output and feedback) is a design and

technological challenge, since the physical properties of

the objects serve as both representations and controls for

their digital counterparts [11]. Here, we make the digital

information directly manipulatable, perceptible and

accessible through our senses by physically embodying

it.

While playing with the system, the user can take

advantage of the distinct perceptual qualities of the

system and this makes the interaction tangible,

lightweight, natural and engaging. Interacting with a

physical parallel and distributed system may mean

jumping over, pushing, assembling, touching physical

objects and experiment a dialogue with the system in a

very direct and non-mediated way, and hence it is viewed

as highly suitable e.g. for student training. Undeniably,

this allows for a direct hands-on experience and learning.

Parallel and Distributed

A computational process is called distributed [12] when a

single computational atom is on one side autonomous

and on the other insufficient to determine the desired

outcome. Therefore a computational process will be

called distributed when two or more computers –

communicating through any possible network - will

contribute to accomplish the very same task by sharing

different roles in a computational problem or process.

Besides that, whenever considering a distributed

(computational) process, it is necessary to define the

level of parallel vs. serial computational flow that the

system should perform, as well as to define the

“computational group” characteristics. The Parallel

computing is a form of computation in which many

calculations are carried out simultaneously, operating on

the principle that large problems can often be divided

into smaller ones, which are then solved concurrently ("in

parallel"). There are several different forms of parallel

computing: bit-level, instruction level, data, and task

parallelism. Since the modular interactive tiles system is

mostly dedicated to the task parallelism problem it tends

to run distributed processes in, at least, three different

ways: Fully-Distributed, Semi-Distributed or

Centralized.

Modular Interactive Tiles System
Under an educational point of view what is really needed,

as well as would be a real additional value, is a tool that

allows for investigating and understanding parallel and

distributed processing meanwhile stressing the user

and/or multi-user interactivity component. One

possibility is the Modular Interactive Tiles System

(MITS) may provide novel programmers with such a tool

and approach, since the system is based on robotic

modules with certain properties: Each robotic module has

a physical expression and is able to process and

communicate with its surrounding environment. The

communication with the surrounding environment is

through communication to neighbouring robotic modules

and/or through sensing or actuation. A modular robot is

constructed from many robotic modules.

The MITS approach inherits the behaviour-based robotics

methods [13] and exploits it with the belief that

behaviour-based systems can include not only the

coordination of primitive behaviours in terms of control

units, but also include coordination of primitive

behaviours in terms of physical control units. We,

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 44

therefore, imagine a physical module being a primitive

behaviour. Thereby, the physical organisation of

primitive behaviours will (together with the interaction

with the environment) decide the overall behaviour of the

system. Hence, in a similar way to the control of robot

behaviours by the coordination of primitive behaviours,

we can imagine the overall behaviour of a robotic artefact

to emerge from the coordination of a number of physical

robotic modules that each represents a primitive

behaviour, eventually opened to single/multi user-

interaction.

The modular interactive tiles can attach to each other to

form the overall system. The tiles are designed to be

flexible and in a motivating way to provide immediate

feedback based on the users’ physical interaction, since

following design principles for modular playware [14].

Fig. 1. Modular tiles used for feet or hands interaction.

Each modular interactive tile has a quadratic shape

measuring 300mm*300mm*33mm – see Fig. 1. It is

moulded in polyurethane. In the center, there is a

quadratic dent of width 200mm which has a raised

circular platform of diameter 63mm in the centre. The

dent can contain the printed circuit board (PCB) and the

electronic components mounted on the PCB, including an

ATmega 1280 as the main processor in each tile. At the

center of each of the four sides of the quadratic shape,

there is a small tube of 16mm diameter through which

infra-red (IR) signals can be emitted and received (from

neighboring tiles). On the back of a tile there are four

small magnets. The magnets on the back provide

opportunity for a tile to be mounted on a magnetic

surface (e.g. wall). Each side of a tile is made as a jigsaw

puzzle pattern to provide opportunities for the tiles to

attach to each other. The jigsaw puzzle pattern ensure

that when two tiles are put together they will become

aligned, which is important for ensuring that the tubes on

the two tiles for IR communication are aligned. On one

side of the tile, there is also a small hole for a charging

plug (used for connecting a battery charger), including an

on/off switch.

There is a small groove on the top of the wall of the

quadratic dent, so a cover can be mounted on top of the

dent. The cover is made from two transparent satinice

plates on top of each other, with a sticker in between as

visual cover for the PCB.

A force sensitive resistor (FSR) is mounted as a sensor

on the center of the raised platform underneath the cover.

This allows analogue measurement on the force exerted

on the top of the cover.

On the PCB, a 2 axis accelerometer (5G) is mounted, e.g.

to detect horizontal or vertical placement of the tile. Eight

RGB light emitting diodes (LED SMD 1206) are

mounted with equal spacing in between each other on a

circle on the PCB, so they can light up underneath the

transparent satinice circle.

Fig. 2. PCB and components of a modular interactive tile.

The modular interactive tiles are individually battery

powered and rechargeable. There is a Li-Io polymer

battery (rechargeable battery) on top of the PCB. A fully

charged modular interactive tile can run continuously for

approximately 30 hours and takes 3 hours to recharge.

The battery status of each of the individual tiles can be

seen when switching on each tile and is indicated by

white lights. When all eight lights appear the battery is

fully charged and when only one white light is lit, the tile

needs to be recharged. This is done by turning of the tiles

and plugging the intelligent charger into the DC plug

next to the on/off switch to recharge each tile.

On the PCB, there are connectors to mount an XBee

radio communication add-on PCB, including the

MaxStream XBee radio communication chip. Hence,

there are two types of tiles, those with a radio

communication chip (master tiles) and those without

(slave tiles). The master tile may communicate with the

game selector box and initiates the games on the built

platform. Every platform has to have at least one master

tile if communication is needed e.g. to game selector box

or a PC.

Fig. 3. Assembly of the modular interactive tiles as a simple

jigsaw puzzle.

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 45

With these specifications, a system composed of modular

interactive tiles is a fully distributed system, where each

tile contain processing (ATmega 1280), own energy

source (Li-Io polymer battery), sensors (FSR sensor and

2-axis accelerometer), effectors (8 colour LEDs), and

communication (IR transceivers, and possibly XBee

radio chip). In this respect, each tile is self-contained and

can run autonomously. The overall behavior of the

system composed of such individual tiles is however a

result of the assembly and coordination of all the tiles.

The modular interactive tiles can easily be set up on the

floor or wall within one minute. The modular interactive

tiles can simply attach to each other as a jigsaw puzzle,

and there are no wires. The modular interactive tiles can

register whether they are placed horizontally or

vertically, and by themselves make the software games

behave accordingly.

Fig. 4. Physical interaction with the modular interactive tiles

placed on the ground.

Also, the modular interactive tiles can be put together in

groups (i.e.: tiles islands), and the groups of tiles may

communicate with each other wireless (radio). For

instance, a game may be running distributed on a group

of tiles on the floor and a group of tiles on the wall,

demanding the user to interact physically with both the

floor and the wall.

Theoretical Aspects of Interactive Parallel

and Distributed Processing

Interactive parallel and distributed systems programming

demands the student programmer to shape specific

abilities, and we believe that the MITS can simplify this

learning process. We will present a number of the

interactive parallel and distributed sub-problems that a

student needs to learn about, and we believe MITS

provides an open tool for facing all the aspects of

programming both low and high level programming or

front and back end representation.

Classical parallel and distributed processes subtasks

Coding parallel and distributed processes stress

programming and understanding of different levels, such

as: physical level (i.e.: bit transmission); data link level

(i.e.: packages, transmission errors and recovery);

network level (i.e.: addresses and packages destination);

transport level (i.e.: messages exchanges between clients

and master/s); session level (i.e.: defining and

implementing sessions in terms of priorities and process-

to-process communication); representation level (i.e.:

working on data-format differences); application level

(i.e.: the end-user interaction and feedback); and to

understand and implement solutions for robustness (i.e.:

errors diagnosis and recovery); reconfiguration (i.e.:

modules assembling); unreliable communication (i.e.:

data loss, duplication and corruption); parallelism and

concurrency (i.e.: language non-deterministic side-

effects); fixed and expanding parallelism (i.e.: modifying

the number of involved processors).

It is also essential when teaching information distribution

to work on problems such as system connection (i.e.:

total vs. partial connection); token-passing (i.e.: how to

share and act on critical information); deadlock

prevention (i.e.: wait-die, wound-wait, etc.); memory

sharing (i.e.: how to locate the physical memory of the

distributed system); topology (i.e.: ordinary and complex

topology algorithms, initial vs. run-time topology

building, etc.); processes transfer (i.e.: distributing the

work-load, speeding up calculation, hardware and

software specialization amongst the system modules);

centralized vs. hierarchy vs. distributed approaches (i.e.:

leaded or unleaded information flow); and run-time

adaptation (i.e.: adapting the system re/actions on-the-

fly).

Besides all of the above “classical” sub-problems of

computer science, our platform forces the educational

session to face other aspects that software designers

should deal with when learning parallel and distributed

processing. Such sub-tasks include local and global

connectivity, hardware multifaceted topologies,

interactivity and adaptive interactivity, and multimodal

feedback.

Connectivity

To materialize a proper interactive parallel and

distributed platform, the modular interactive tiles system

has to implement both a local connection system -

through which the hardware cells communicate to the

neighbourhood and propagate such information from side

to side – and a global connection device – through which

to connect with neighbour platforms and any external

tool.

Hardware Multifaceted Topologies

Since the modular interactive tiles system implies the use

of run-time de/attachable modules, the emphasis on

hardware/software topology is quite strong and it

demands a big effort to comprehend the programming

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 46

and dealing with such structures. In our model we were

able to identify three specific subtypes of topologies:

1. Regular, that is a one-block (i.e. any given group of

hardware cells attached in a contiguous way and sharing

a single master cell) platform with modules attached in a

squared or rectangular shape;

2. Irregular, which is a one-block platform, which can be

arranged in any desired shape. Nevertheless hardware

cells have to be continuous (i.e. the assembling does not

reveals discontinuity and there is not any isolated cell or

group of cells);

3. Islands Configurations, that is a platform made with

two or more one-blocks (i.e. as defined above in point 1,

and 2). It makes no difference whether master cells

communicate amongst each others, through an external

device, or do not communicate at all.

Interactivity

Implementing software for modular interactive tiles

implies designing, or at least dealing with a quite relevant

interactive scenario, since in most cases the use of the

software itself relies on the users’ physical and

continuous action. The software designer will have to

deal with completely different requirements accordingly

to single-user or multi-user targeted software. Often, the

software designer will also have to hypothesize a large

variety of behavioural situations, even including

situations (according to our personal experience) where a

single-user platform will be used by many users, or a

multi-user software will be run by a single user.

Adaptive Interactivity

The way we approach interaction in such a modular and

distributed model leads beyond the classic idea of

human-machine interaction (HMI), and is of fundamental

importance since it prospects and applies - under both

physical and cognitive circumstances – user adaptation

and user adaptivity. First of all, our model being

architecturally reconfigurable – eventually run-time

reconfigurable – represents by itself the essence of

adaptation. In addition, being focused on users’ physical

action, such a system can be easily tailored to users’

activity, either in real time or in the long run. To reach

such a goal, modular interactive tiles can be programmed

using many different strategies that also depend on the

quality and quantity of feedback the software designer is

willing to exchange with the users. (Feedback and

multimodal feedback will be introduced in the next

paragraph). Indeed, in more then one case we showed

[15, 16] that using modular interactive tiles we could

detect some of the users’ characteristics, and therefore

adapt the software execution to those. Last but not the

least, in further tests it has been shown that by capturing

the users’ provisory attitude and adapting the software

execution to that it is possible, in some cases, to

eventually modify the users’ behaviour itself [16].

Multimodal Feedback

When talking about HMI we kind of committed

ourselves to the "how you give is more important of what

you give" motto. Therefore, in recent years we pushed

our research towards software and tools that can both

give and get feedbacks from the user(s).

When developing software for modular interactive tiles

we constantly try to provide the user with an immediate

feedback (e.g. LED, experience report) as well a delayed

or long term feedback (e.g. adaptivity, documentation

software). For the immediate feedback from modular

interactive tiles we use light (LED) configuration or

colours. In addition to that, anytime there is a need for a

stronger or a more complex or long-run “signal”, we

interface the modular interactive tiles with external

devices in a layered mode, where each layer of feedback

can be added/removed freely on top of each other This is

what we call Layered Multi-modal Feedback [17]. The

external devices we use can be “passive” as vision

oriented feedback (e.g. screen, projector, etc.), sound

oriented feedback (e.g. loud speakers, buzzers, etc.), or

“active” such as computational devices that through an

external communication (e.g. radio and internet) run an

analysis or link the user action to specific databases.

In conclusion, to manage and teach the many features of

parallel and distributed programming we need to run on a

system, which is robust, reliable and easily

reconfigurable. This is where we believe that the MITS

can express a certain degree of efficiency, besides of

being ideal in shifting the level of representation from the

very abstract representation to an empirical

representation. Therefore, in the following paragraph we

provide examples, which attempt to show how one can

access the above-described aspects in a fast,

comprehendible and easily generalizable way.

Implementations Examples
As a first step the teacher/tutor should introduce students

to the hardware platform (Figures 2, 3, and 4) and ask the

class to implement all the needed protocols for obtaining

a robust, efficient and reliable parallel and distributed

system. This would require and encourage students to

face the basic algorithms and protocols that the subtasks

of parallel and distributed systems need (e.g.: physical

level, data link level, network level, transport level,

session level, representation level, etc.).

Once such a start-up system is obtained (from the

students work or from the pre-made system), a second

step could be, for example, testing the system by working

on problems such as application, robustness,

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 47

communication, system connection, token-passing,

deadlock prevention, parallelism, reconfiguration,

memory sharing, topology, and process transferring.

The MITS model is ideal for implementing all of the

above challenges since the hardware components are

minimalistic and the distributed system complexity can

be developed and tested in a quick and easy manner

(Figure 5).

Fig. 5. Examples of different topologies

Once students have reached this new level of

competencies, the tutor can drive their attention to a

higher level of representation and ask them to implement

end-user interaction based applications, such as in the

following examples.

Games Examples.

Once a specific topology is chosen, the software

engineering student can implement and run a large

variety of tasks (here we start by considering examples to

apply to a semi-distributed, single user application on a

regular topology platform).

Open Loop and Randomness based software.

The simplest case, a naïve one, could be the following

Easy Game (Figure 6).

Fig 6. Easy Game, a sequence of 7 states

In Easy Game the light is “passed” from one module to

either an adjacent or a distant one (i.e. with a predefined

open loop algorithm or randomness based one). In both

the above cases the software cycling is endless and we

need to introduce the interactivity level (e.g. the game

finishes when the user hit the lighted tile) to stop it, and

by doing so transforming the two into very young

children games. When the user press a tile, then the

dynamics somehow stops and the tiles freeze in a

particular pattern, until the user presses the lighted tile

again, and the light shift sequence will start again.

Rule(s) based software.

One step further is a rule-based software characterized by

the fact that pattern sequence - which can either be

predefined or random based – is governed by a specific

rule or set of rules. The simplest case we can think of is

the one where, given any machine state and configuration

(e.g. two tiles) those states which are ON turns OFF and

those states which are OFF turns ON. Of course, we can

design a much more complex setting but, essentially, this

is the logic that is used in rule based software.

On the other hand, when introducing the interaction

element in rule based software we obtain a more dynamic

scenario denoted by the fact that the rules and users are

coactive and contribute step by step to the system state.

Such a situation can be clearly observed in the American

Football game (Figure 7).

Fig. 7. American Football, a sequence of 5 states

This is one-against-one game where, given a, say, 5

(width) per 2 (height) cluster of modular interactive tiles,

such interactive software is made so that at the beginning

of the game the platform extremes appear activated (i.e.

light on) and of two different colours (i.e. blue in one

extreme and red in the other extreme). By squeezing the

tiles, the user “pushes” the color/activation forward in the

row (i.e. switches off the squeezed tile and switches on

the adjacent one towards the opponent). The user who

first pushes its color to the opposite extreme of the game

platform wins the game.

User-interaction based software.

The user-interaction based program is, per se, an

interactive software conception in which the user directly

contributes to the next machine state (i.e. tiles color or

activation). Such a software model is quite similar to the

interactive version of the rule based software – since the

user itself cannot determine the machine states if not

aided by some underlying algorithm. It only differs from

that in terms of strain used on increasing the user role and

contribution to the next machine state, and the attempt to

reduce the rule component. A good example could be the

Final Countdown game (Figure 8). In the Final

Countdown the tiles platform can vary both in aspect and

size, since the game components behave all in the very

same way. It consists of a number of tiles that, when the

game is initiated, all of the tiles are fully lighted (i.e. any

color would do). After initialization and with a given

interval (e.g. one second) they all start to “fade-out”

switching OFF one of their 8 light bulbs after the other in

a clockwise sequence. If one of them gets completely

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 48

OFF the game is over. To restore a single tile to the

initial state, the user has to squeeze it. The wider is the

platform the more important becomes the strategy users

bring into play to keep the game alive.

Fig. 8. Final Countdown, a sequence of 6 states

A.I. and ALife based software.

The A.I. and ALife based software are, again, a

complication of what we defined as rule based systems.

Essentially they rely on the same principles, both for the

autonomous and the interactive version, although the

quality of the computational experience is much higher in

terms of software behavioral equality/variety,

un/predictability, and etc. Further, since modular

interactive tiles tend to resemble pixel-made structures it

seems to easily incorporate a consistent number of

classical and modern A.I. paradigms. A good example is

the Cellular Automata (i.e. CA), a discrete model used in

computability theory and many different fields, which

consists of a regular grid of cells, each one with a finite

number of possible states (e.g. ON, OFF), that can

change their state accordingly with their neighborhood

activation states [18]. We, first, implemented one of the

most famous CA algorithms, the Conway’s Game of Life

on modular interactive tiles and, after that, added the

interactive aspect.

Conclusion
We developed the concept of interactive parallel and

distributed processing in order to put focus on the

physical interaction with parallel and distributed system,

and to highlight the many challenges that the student

programmers might face in understanding and designing

interactive parallel and distributed systems.

It is our belief that a system like the modular interactive

tiles is a tool for easy, fast, and flexible learning and

exploration of these challenges, e.g. as shown with the

examples of how to implement interactive parallel and

distributed processing with different software behavioral

models such as open loop, randomness based, rule based,

user interaction based, AI and ALife based software.

Indeed, MITS provides an educational hands-on tool that

allows a change of representation of the abstract

problems related to designing interactive parallel and

distributed systems, so that students can learn about

classical and modern aspects of parallel and distributed

systems.

Acknowledgements

The authors wish to thank the Centre for Playware

colleagues for discussions of the concept and

implementations.

References
[1] Harel, D. Algorithmics, Addison-Wesley, 1987

[2] Silberschatz, A., Peterson, J., Galvin, P. Operating System

Concepts, Addison-Wesley, 1991

[3] Piaget, J. and Inhelder, B. La psychologie de L'enfant. Paris,

P.U.F, 1966.

[4] Papert, S. Mindstorms: Children, Computers, and Powerful

Ideas. Basic Books, New York, 1980.

[5] Papert, S. Constructionism: A New Opportunity for

Elementary Science Education. A proposal to the National

Science Foundation, 1986.

[6] Martin, F. “Ideal and Real Systems: A Study of Notions of

Control in Undergraduates Who Design Robots”. In Y. Kafai

and M. Resnick (Eds.), Constructionism in Practice: Rethinking

the Roles of Technology in Learning, MIT Press, MA, 1994.

[7] Lund, H. H. “Robot Soccer in Education”. Advanced

Robotics Journal, 13:8, 737-752, 1999.

[8] Lund, H. H., and Sutinen, E. “Contextualised ICT4D: a

Bottom-Up Approach”, Proceedings of 10th International

Conference on Applied Computer Science, WSEAS, Japan,

2010.

[9] Zhang, J. The Nature of external Representations in

Problem Solving. Cognitive Science 21:2, 179-217, 1997.

[10] Zhang, J., Norman, D.A. Representations in Distributed

Cognitive Tasks. Cognitive Science 18: 87-122, 1994.

[11] Ishii, H. Ullmer, B. Tangible Bits: Towards Seamless

Interfaces between People, Bits and Atoms. In Proceedings of

CHI: Human Factors in Computing Systems. pp. 234–41, 1997.

[12] Rumelhart, D., McClelland, J., et al., 1986, Parallel

Distributed Processing, vol. I, Cambridge, Mass.: MIT Press.

[13] Brooks, R. “A robust layered control system for a mobile

robot”. IEEE Journal of Robotics and Automation, 2(1):14--23,

1986.

[14] Lund, H. H. and Marti, P. "Designing modular robotic

playware," the IEEE Int. Workshop Robots Human Interactive

Commun Toyama, Japan. Sep. 27-Oct. 2., IEEE Press, 2009.

[15] Hammer, F. Derakhshan, A., Hammer, F., and Lund, H.

H. “Adapting Playgrounds for Children's Play Using Ambient

Playware”. In Proceedings of IEEE Intelligent Robots and

Systems (IROS’06), IEEE Press, Hong Kong, 2006.

[16] Thorsteinsson, T. and Lund, H. H. “Adaptive Modular

Playware”. (in press).

[17] Lund, H. H. and Thorsteinsson, T. “Social Playware for

mediating tele-play interaction over distance” to appear in

Proceedings of 16th International Symposium on Artificial Life

and Robotics, ISAROB, Japan, Jan. 2011.

[18] Neumann, J. v. “The general and logical theory of

automata,” in L.A. Jeffress, ed., Cerebral Mechanisms in

Behavior – The Hixon Symposium, John Wiley & Sons, New

York, 1951, pp. 1-31.

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 49

