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Abstract: The purpose of this study is to construct a general model for optimization problems with incomplete information,
and to assist designing solutions. The term “incomplete information” means that information of target system, e.g. the dy-
namics and the status variables, is not obtained enough to optimize. Before description of proposed model with incomplete
information, an optimization model with “complete” information is structured. The occasions with “incompleteness” of in-
formation are explained on this optimization model, and approaches to resolving them are described. Then, the optimization
model with incomplete information is defined. Moreover, in order to investigate the validity of the proposed framework, it is
applied to cab-dispatching (of cruising taxis) problems, where the objective is to distribute a set of cabs efficiently by indicating
the adequate location to each taxi driver. Through some computational examples, the effectiveness and the potential of the
proposed approach is confirmed.
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1. INTRODUCTION

This research deals with a class of optimization problems
with incomplete information, in which the information about the
structure as well as the dynamics of the target system is not suf-
ficient. To this class of the problems, in this paper, a general
framework for both modeling the problem formally and design-
ing a solution structure systematically is newly proposed. This
class includes such types of optimization problems as contain-
ing some uncertainty in systems, e.g. due to the spatially partial
or temporarily late observability, and/or some unobservability in
decision-making.

So far, lots of researches have been presented on several
types of optimization problems with uncertainty, from the view-
points of the description of the problem as well as the design
of solutions [1∼3]. However, there have been few studies on
general frameworks of both optimization models and their so-
lutions. By introducing informational viewpoints, a variety of
uncertain aspects may be dealt with in a uniform way, which is
the keynote point of our research.

For confirming validity of the proposal aproach, it is applied
distributed cruising taxi problems. In these cab-dispatching
problems, there are many unobservable state variables, e.g., the
occurrence of passengers and the positions of the cabs of com-
petitive companies. It is difficult or it might be impossible to
optimize the dispatching beforehand due to incompleteness. In
designing the solution, a set of rules (rule-set) for indicating the
priority areas in the information layer, and a genetics-based ma-
chine learning (GBML) method is adopted to adjust a rule-set in
the supervisor layer. As a result of the computational examples,
the effectiveness and the potential of the proposed approach is
confirmed.

2. OPTIMIZATION PROBLEMS

2. 1 Optimization Model with Complete Information
Optimization problems are defined as problems to maxi-

mize/minimize evaluation values about behaviors of systems.
Components of the optimization problems are referred as; “Tar-
get System” is the target of evaluation for optimization, and
is controlled directly, “Relevant System” interacts with Target
System, in other words, Relevant System may be possible to
be controlled indirectly, “Environment” acts Target System, and
can’t be conrolled, “Controller” decisions a direction of Target
System’s behaviors, “Supervisor” affects the decision-making
of Controller.

In order to optimize, these components have to convey de-
cisions for others, i.e., “Control”: Controller sends operations,
which indicate what to do, to Target System, “Supervision”: Su-
pervisor sends orders for decision-making to Controller.

For making decisions, the components know about others,
i.e., “Observation”: The states of Target System, Relevant Sys-
tem and Environment are sensed by Controller, “Evaluation”:
Controller sends results, which are clued to judge the effec-
tiveness of decision-making, to Supervisor. These components
and information-exchanges are collectively called “Optimiza-
tion Model” in this paper.

To understand easily, Optimization Model is identified as a
hierarchical manner; “Physical Layer” shows the physical side
of the problems, and includes continuous-time systems, i.e. Tar-
get System, Relevant System and Environment, “Information
Layer” shows the information side of the problems, and in-
cludes short-rate discrete-time system, i.e. Controller, “Super-
visor Layer” shows an optimizer for the problems, and includes
long-rate discrete-time system, i.e. Supervisor.

Definition of Time Constant: Target System is optimized
during T (= [0, T )). Controller evaluates behaviors of Target
System every time interval τE , and Physical Layer is observed
each sampling cycle τO . The time horizon T is discretized to
nE terms by the interval τE , and each k-th term T (k) is dis-
cretized to nO periods by the cycle τO . Then, T (k) corresponds
the time interval [ kτE , (k+1)τE ), and m(k) th period corre-
sponds

ˆ

kτE+mτ, kτE+(m+1)τ
´

. The set of periods T D is
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defined as below;

T O(k) = {0, . . . , nO} (nO = (τE/τO)−1). (1)

If notation “(k)” isn’t be needed, it is omitted in following. The
information-exchanges on the time axis are illustrated in Fig. 1.

Elements: The elements of the optimization model (and
correspondent elements of Dispatching Cruising Taxi Problems
which are described later) are shown in Table 1.

Fig. 1 Information-exchanges between each layer.

Input/Output: Each component’s inputs/outputs with
complete information is defined as below;

aS(t) = oR(t), eS(t) = oV (t), aR(t) = oS(t) ,

eR(t) = oV (t), u(t) = v [bt/τc],
y[m] =

`

xS(mτ), xR(mτ), xV (mτ)
´

,

p[0(k)] = c[0(k)], r[nE(k)] = Z[nE(k)].

Optimization Problems: The objective function and the
restriction is formulated as;

min Z =F{y[0], . . . , y[nO]}+P (G){y[0], . . . , y[nO]}

s.t. v[m] ∈ H[m] (∀m ∈ T O)

Controller obtains the states of Target System by observations.
Then, the state restriction is used in a penalty P .

2. 2 Incompleteness

2. 2. 1 Classification
A variable y is observation quantities of a status variable x.

The relation of y and x with complete information is as follow;

y[m] = x(mτO). (2)

The classes of incompleteness in the observations are;
( i ) Accuracy (error): An observed value includes an error
σ(t) [%].

y[m] = x(mτO) + σ(mτO). (3)

(ii) Time delay: A status value of time τ(t) ago is observed.

y[m] = x(mτO − τ). (4)

(iii) Unobservable: A status value is unobservable.

y[m] = ∗. (5)

The symbol ∗ means uncertain value.
The observations are classified completeness, incompleteness
( i ), (ii), (iii), or combination of theirs.

2. 2. 2 Completion
Completion functions are required for each incompleteness;
• for incompleteness ( i ) : fC

y[m] = fC(x(mτO) + σ(mτO)) = x(mτO), (6)

• for incompleteness (ii) : fE

y[m] = fE(x(mτO − τ)) = x[m], (7)

• for incompleteness (iii) : fP

y[m] = fP (∗) = x[m]. (8)

The functions fC , fE and fP each are called “Correction”, “Es-
timation” and “Prediction”.

In order to implement completion of incompleteness, infor-
mation as follows are needed. “History”: an history about a
status variable to observe is effective for Correction and Predic-
tion. “Same kind of a status variable”: if a system is consists
of subsystems, e.g. multi-agent, status variables of each subsys-
tem, which are same kind of a state to observe, help Estimation.
“Other kind of a status variable”: if a status variable can’t be
observed, other state values of a same system might be valid for
Estimation. “Knowledge”: knowledge about a system or dy-
namics assist all completions.

2. 3 Optimization Model with Incomplete Information
Optimization Model with incomplete information has com-

pletion functions defined in Section 2. 2. 2. Completion Module
converts observed values, and sends complementary values to
Controller. An overview of Optimization Model with incom-
plete information and an inside of Completion Module are illus-
trated in Fig. 2.

Completion Module Overview

Fig. 2 Hierarchical model of optimization problem with incomplete in-
formation

3. DISPATCHING CRUISING TAXI PROBLEMS

For confirming validity of the proposal optimization model,
the model applies Dispatching Cruising Taxi Problem.

3. 1 Outline
Since the revision of Road Transportation Law in Japan, the

taxi business is becoming saturated by new entries. In partic-
ular, rookie drivers have a lot of trouble finding passengers,
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Table 1 Elements of optimization problems and corresponding with Dispatching Cruising Taxi Prob-
lems

Layer Component/System† Symbol‡ Element†

Physical

Target System

• xS state (position, assigned passenger and number of assignment)

(Cooperative Company)

+ u control input (dispatching area)
+ aS relevant action (position, destination and assigned cab)
+ eS environment action (traffic jam)
? T S transition function (move rule)
− oS output action (position and assigned passenger)
? US output function (take rule)

Relevant System (1)

• xR state (position, destination, appearance time and assigned cab)

(Passengers)

+ aR relevant action (position and assigned passenger)
+ eR environment action (weather)
? T R transition function (appear rule)
− oR output action (position, destination and assigned cab)
? UR output function (ride rule)

Relevant System (2)

• xR state (position and assigned passenger)

(Competitive Company)

+ aR relevant action ([Not Available])
+ eR environment action (traffic jam)
? T R transition function (move rule)
− oR output action (position and assigned passenger)
? UR output function (take rule)

Environment
• xV state (states about weather and traffic jam)

(Environment)
? T V transition function (weather and traffic translation)
− oV output action (weather and traffic jam)
? UV output function (weather and traffic action rule)

Information
Controller

+ y observed value (cabs states, passengers actions and environment actions)

(Dispatch Controller)

• M observed record (observed record)
− v operation (dispatching area)
+ p operation parameter(weight coefficients)
? G state restriction ([Not Available])
? H operation restriction(area permitted business)
? C operation function (priority calculation)
− Z evaluated value (total of assignment)
? F evaluation function (sum of assignment)

Supervisor
Supervisor

+ r result (total of assignment)

(Supervisor)

• R result record (assignment record)
− c order (weight coefficients)
? o order function (GBML)
• O order record (weight coefficient record)

† Words in parentheses are corresponding components or elements of Dispatching Cruising Taxi Problems.
‡ Header symbols mean +:input, −:output, • :state, and ? :other, e.g. dynamics.

because taxi business has relied on individual experience of
drivers. The taxi companies need systems which assist less-
experienced drivers for finding passengers. There have been
studies based on statistical models [4), 5], in contrast, few stud-
ies have been carried out to analyze Dispatching Cruising Taxi
Problem agent-models.

3. 2 Approach

Positions of passengers, targets of taxis, are unobservable in
these problems. Thus, taxis are dispatched regions. This paper
suggests an optimization framework for taxi dispatching by the
rule-set which calculates target areas with observable state vari-
ables. The corresponds of the proposed model and Dispatching
Cruising Taxi Problems have been described in Table 1.

Definition of Space: A region A is intended in a problem,
and a cooperative company is permitted business in a region
AB . The region A is divided to regions Aa (a = 1, . . . , nA),
and each cab of the cooperative company is distributed to any
region Aa. The region Aa is called “Area a” below.

Priority Rule: A priority rule calculates priorities of each
area for every cab. Each cab is dispatched to the area which is
highest priority for the cab. The rule calculates priority which is
a weighted summation of preparing equations.

Learning Method: In this paper, condition is defined as
partially feature quantity space of whole areas, and action is de-
fined as weight coefficients in the priority rule [6].

Elements: The elements of dispatched cruising taxi prob-
lems have been shown in Table 1.

4. COMPUTATIONAL EXAMPLE

Simulations which learn the rules and evaluate them are per-
formed to verify the validity of proposed approach for distribu-
tion cruising taxi problems. The Rules learned by GBML are
compared with a heuristic rule by evaluated values.

4. 1 Setting
Simulator: The cooperative company’s cabs go to its own

dispatching area by the shortest distance, and move randomly
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in the dispatching areas after arrival. The competitive company
uses a proportion rule, this rule dispatches proportional number
cabs to the ratio of estimated number of passengers in each area
to whole areas. The passengers appear only in permitted busi-
ness region AB . The number of emerging passengers in whole
areas is 3 per a time unit on average. The number of the areas is
100, and the number of the permitted business areas is 64.

Priority Rule: The priorities are calculated by weighted
equations with properties as below. The areas have more prior-
ity, in which more passengers appear probably and more nearly.
The areas have more priority, in which less cabs of the coop-
erative company, The areas have more priority, in which more
passengers appear probably, The prior areas are decided at ran-
dom. The weight of equations have been normalized in refer to
results of preliminary experiment.

GBML: The number of individuals is 30, and the number
of generations is 100. Each individual is simulated 2 times in
each condition (I) ∼ (III), about random variables for passen-
gers, weather and traffic jam, and the average of evaluated value
are treated as a fitness of the individual. The conditions of pas-
senger appearance are combination of 4 patterns. The patterns
are illustrated in Fig. 3, and the combinations are (I): pattern 1
in the noon and pattern 2 in the night, (II): 3 and 3, (iii) 4 and 4
which are made by different seeds. GBML searches the weight
coefficients from 0, ±0.25, ±0.5, ±0.75 or ±1. The feature
quantity space is composed of variables defined as, deviation of
the number of cabs in each area, estimated number of appearing
passengers in whole areas, ratio of cabs carrying no passengers,
time slot. The space is divided by small or large of each variable.

Pattern 1 Pattern 2

Pattern 3 Pattern 4

Fig. 3 Examples of appearance patterns of the passengers

Example Problem
The simulations for learning are performed in 2 cases; (a) the

cooperative company has 10 cabs, and the competitive company
has 20 cabs, (b) the cooperative company has 80 cabs, and the
competitive company has 160 cabs, and each case are learned 3
trials. Moreover, the best solutions of each trail and the propor-
tion rule are evaluated 4 times in each condition (I) ∼ (III) and
all conditions.

4. 2 Result
The learning process of the best solution in every trial are

plotted in Fig. 4. The result for evaluation the acquired rule and
the proportion rule is plotted in Fig. 5.

(a) (b)
Fig. 4 Learning processes of GBML

(a) (b)
Fig. 5 Evaluation results

From the figures, the acquired rules are valid as well as the
proportion rule in all conditions, and better than substantially in
particular situations.

5. CONCLUSION

The optimization problems and incompleteness on observa-
tion are described. By using them, the optimization model with
incomplete information is defined. In addition, in order to con-
firm utility of the proposed model, it applies Dispatching Cruis-
ing Taxi Problems. As the result, the proposed model has po-
tential to express the taxi problems, and to acquire the good so-
lutions. The following are left for future study: to improve the
optimization model focused on incompleteness of information,
and to apply the proposed model to other problems for future
works.
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