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Abstract: In this paper, we present a simple competitive particle swarm optimizer (CPSO) for finding plural solutions. 

In the CPSO, particles are divided into groups corresponding to the required number of solutions. Each group 

simultaneously searches solutions having a priority search region. This region affects to prohibit that different groups 

search the same solutions. The CPSO can effectively find desired plural acceptable solutions with a high accuracy and 

with a low computation cost, and can easily control combinations of these solutions by adjusting a parameter. This 

paper evaluates the CPSO in complex global optimization benchmarks. Through the numerical experiments, searching 

performances of the CPSO are clarified. 
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I. INTRODUCTION 

Particle Swarm Optimizers (PSOs) are known as a 

kind of metaheuristic algorithms [1]-[4]. Swarms such 

as birds and fishes decide actions to consider not only 

status information of each individual but also status 

information as whole of their swarms. The PSO 

expresses such actions by simple arithmetic operations. 

In the PSO, particles search solutions in an objective 

problem. Each particle has velocity and position 

information, and moves in a multidimensional search 

space considering a personal best solution which each 

particle memorizes and a global best solution which all 

particles share. The PSO can fast solve various 

optimization problems with a low computation cost.  

On the other hand, in the actual engineering 

optimization problems, there exist a lot of design 

variables and constrained conditions to be considered. 

Then, the exact modeling for these problems can be 

hard. Also, solutions obtained from approximated 

models are not always available in the actual problems. 

Therefore, it is needed that plural acceptable solutions 

as design candidates can be provided in reasonable 

computation time. Many methods along this line have 

been proposed [5]-[9]. These methods can sequentially 

find plural acceptable solutions by behaving like general 

tabu search. However, by the effect of competitive 

search, the quality of each solution obtained from these 

methods is often lower than that obtained from the 

original PSO. In addition, these methods have many 

parameters; it is hard to control them.  

 

In our previous works, a simple Competitive PSO 

(CPSO) for finding plural solutions has been proposed 

[10]. In the CPSO, particles are divided into groups 

corresponding to the required number of solutions. Each 

group simultaneously searches solutions having a 

priority search region. This region affects to prohibit 

that different groups search the same solution. The 

CPSO can effectively find desired plural acceptable 

solutions and can easily control combinations of these 

solutions by adjusting a parameter. Also, quality of 

some solutions obtained from the CPSO are almost the 

same as or better than that obtained from the original 

PSO. This means that the competitive search in the 

CPSO does not suppress the searching performances of 

the original PSO, and realize to effectively search plural 

acceptable solutions. In addition, the CPSO can fast find 

plural solutions without repeating many trials. 

The CPSO has been evaluated for basic global 

optimization benchmarks and has been applied to a 

problem in sensor networks [10]. However, in practical 

problems such as the sensor networks, objective 

functions can be complex shapes and can include 

complex dependencies between design variables. The 

detailed evaluations of the CPSO in such functions have 

not been sufficient so far. This paper evaluates the 

CPSO in complex global optimization benchmarks. 

Through the numerical experiments, searching 

performances of the CPSO are clarified. 
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II. PARTICLE SWARM OPTIMIZERS 

Swarms such as birds and fishes decide actions 

depending on not only status information of each 

individual but also status information as whole of their 

swarms. PSO is an optimization method that imitates 

behavior of the swarms. In PSO, particles efficiently 

search solutions in a target problem, by updating their 

positions and velocities based on personal best solutions 

which each particle has and a global best solution which 

all the particles have. Basic algorithm of PSO is 

described as follows (see Fig.1). 

 

  

Fig.1. Movements of particles 

 

(step1) Set positions and velocities of each particle at 

random. 

(step2) Update the positions of each particle by 

Equation (1). 
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where 
k
ix  and 

k
iv  are position and velocity of the i -

th particle at the k -th iteration, respectively. 

(step3) Calculate evaluation values of each particle and 

update each personal best solution ( ipbest ). 

(step4) Update global best solution ( gbest). 

(step5) Update the velocities of each particle by 

Equation (2). 
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where w  is an inertia coefficient for the previous 

velocity vector. 1c  is a weight coefficient for the 

personal best position vector. 2c  is a weight 

coefficient for the global best position vector. 1r  and 

2r  are uniform random numbers from 0 to 1. 

 

Fig.2. Groups of particles with priority search region

s 

 

(step6) Repeat from step2 to step5 until the number of 

iterations or an evaluation value of a solution reaches a 

predetermined value.  

 

III. COMPETITIVE PSO 

In general, it will be difficult to model design 

variables and constraint conditions exactly when 

optimization algorithms are applied to real problems. 

Then, it is more practical to obtain plural acceptable 

solutions as design candidates and to select the best 

solution from them rather than to obtain a single exact 

optimum solution. This paper presents a competitive 

PSO (CPSO) that can efficiently find the plural 

different acceptable solutions by dividing particles into 

plural groups. In the original PSO, it is difficult to find 

plural solutions because all the particles converge to a 

single solution by moving toward a global best solution. 

In the CPSO, it is considered that particles are divided 

into arbitrary m groups. In addition, these groups have 

own local best solution instead of global best solution as 

shown in Fig.2. As a result, plural solutions can be 

found because particles move toward each own local 

best solution. But, only dividing into plural groups, 

they may converge to the same solution. Therefore, 

priority search regions from each local best solution are 

introduced. In the region, the particles of a group can 

search more preferential than other groups. If a particle 

moves into the regions of the other groups, the CPSO 

excepts for the particle from the candidate in updating 

own local best solution. Then, it is possible to search 

the plural different solutions efficiently because each 

group does not approach to the regions of the other 

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11), 
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 708



groups to each other. The algorithm of the CPSO is 

described as follows. 

(step1) Set positions and velocities of each particle at 

random and set the parameter r  corresponding to 

priority search region. 

(step2) Divide p  particles into arbitrary m  groups. 

(step3) Update positions of all the particles regardless 

of groups by Equation (1). 

(step4) Calculate evaluation values of each particle and 

update each personal best solution ( ipbest ). 

(step5) Let jlbest  be the local best solution which 

particles in the j -th group have. Calculate Euclidean 

distances between positions of each particle in the j -th 

group and positions of 'jlbest  in the 'j -th group 

( jj ' ). 

(1)Euclidean distance is shorter than the range r: 

The particle is excepted from a candidate of jlbest . 

(2)Euclidean distance is longer than the range r: 

The particle is included as a candidate of jlbest  in 

the same way as gbest in the original PSO. 

(step6) Update each jlbest  that are chosen from the 

particles of each group. 

(step7) If each position of jlbest  and 'jlbest  

( jj ' ) overlaps to each other for the priority search 

regions, values of jlbest  and 'jlbest  are compared. 

If jlbest  is better, the positions of the particles in the 

j -th group are left. Otherwise, their positions and 

jlbest  are reset at random.  

(step8) Update the velocities of each particle by 

Equation (3). 
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(step9) Repeat from step3 to step8 until the number of 

iterations or an evaluation value of a solution reaches a 

predetermined value.  

When a group always overlaps priority search 

regions of other groups, this group can obtain no 

solution because local best solution of the group is reset 

every time. 

 

IV. SIMULATION RESULTS 

The CPSO is applied to some benchmark problems 

and the performances are confirmed. In all the 

experiments, some parameter values are fixed as 

follows: 500p , 9.0w , 0.121 cc , 5m . 

Varying the parameter of range r  and the number of 

dimensions n , typical results are presented. 

The CPSO is applied to Modified Rastrigin function 

defined by Equation (4). 
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*x  is a random optimal solution and ),( baU  

denotes uniform random numbers from a  to b . And 

rotation matrix R  is given by Equations (5a) and (5b).  
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This function has a complex shape. This function 

gives minimum value 0 when design variables are 
*x . 

It has many suboptimum solutions in arrangement like a 

lattice around the optimum solution. 

First, we show the simulation results for 2n . As 

8.0r , the CPSO can find the optimum and better 

suboptimum solutions as shown in Fig.3. Therefore, 

when the range is set appropriately, it is possible to find 

desired plural acceptable solutions. As 3.1r , the 

CPSO can find optimum and better suboptimum 

solutions as shown in Fig.4. In addition, the discovered 

suboptimum solutions are more distant from the 

optimum solution than those obtained in 8.0r . This 

reason is that the suboptimum solutions obtained in 

8.0r  are contained in priority search region of the 

group at the optimum solution as 3.1r . As a result, 

the CPSO can accurately search for better solutions 

outside the range r . This means that the CPSO can 

easily control the distance of each solution by adjusting 

the range r . 
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Fig.3. Simulation results ( 8.0,2  rn ) 

 

 

Fig.4. Simulation results ( 3.1,2  rn ) 

 

Next, simulation results for higher dimensional 

Modified Rastrigin function ( 20n ) are shown. The 

trials are repeated 100 times and the average values are 

presented. Table 1 shows the results for 8.0r . 

Although the optimum solution cannot be found, plural 

acceptable suboptimum solutions can be found as 

shown in Table 1. Therefore, the CPSO can obtain 

plural solutions easily also in high dimensional and 

complex problems. In addition, quality of some 

solutions obtained from the CPSO are almost the same 

as or better than that obtained from the original PSO.  

 

V. CONCLUSION 

This paper has been evaluated a simple competitive 

PSO for multimodal functions with complexity. 

Adjusting a parameter of a priority search range, desired 

plural acceptable solutions can be effectively found and 

can be easily controlled. In the practical engineering 

optimization problems, not only a single exact optimum 

solution for the problems but also plural acceptable 

solutions for them are often required. The CPSO will be 

a simple and powerful tool to effectively solve these 

problems. Future problems include (1) adaptive control 

of parameters in the CPSO, (2) investigations of 

performances for various higher-dimension problems, 

and (3) applications to various engineering optimization 

problems.  

Table 1. Evaluation values ( 8.0,20  rn ) 

Group 2F  

average best worst 

1 

2 

3 

4 

5 

 23.10 

 29.42 

 34.96 

 40.49 

 51.63 

  9.95 

 17.91 

 22.88 

 26.86 

 28.85 

 38.80 

 50.74 

 60.69 

 61.69 

 95.52 

Original PSO  37.08  13.93  71.58 
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