
Proposal of recommender system simulator based on small-world model

Ryosuke Saga*, Kouki Okamoto*, Hiroshi Tsuji**, and Kazunori Matsumoto*

*Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa, Japan
**Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, Japan

 (Tel : +81-46-291-3235; Fax :+ 81-46-242-8490)
(saga@ic.kanagawa-it.ac.jp)

Abstract: This paper proposes the development of a software simulator that allows a simulator’s users to evaluate
algorithms for recommender systems. This simulator consists of agents, items, Recommender, Controller, and Recorder,
and it locates the agents and allocates the items based on a small-world network. The agent plays a role in a user in
the recommender system and the recommender plays a role in the recommender system. Controller handles the simu
lation flow that (1) Recommender recommends items to agents based on the recommendation algorithm, (2) each
agent evaluates the items based on agents’ rating algorithm using each item’s and agent’s attribute, and (3)Recorder ob
tains the results of the rating and the evaluation measurement for the recommendation pertaining to such informatio
n as precision and recall. This paper discusses the background of proposal and the architecture of this simulator.

Keywords: Recommender System, Multi-agent simulation, evaluation, small-world model.

I. INTRODUCTION

Recommender systems have been used for several

applications and systems such as news sites,

information sharing system, e-commerce and so

on[1][2][3]. The systems offer benefits to consumer and

item providers. These recommender systems help

consumers in particular acquire new as well as

preferable items and users can expect effective

acquisition of the information. Therefore, an appropriate

algorithm is needed for the recommender system.

Several researchers have proposed and developed

many algorithms since collaborative filtering, one of the

most successful technologies for recommender systems,

was introduced and attracted many attentions

[4][5][6][7]. However, developing and applying the

algorithm of collaborative filtering are difficult. One

reason is based on the difficulty of evaluating these

algorithms. For example, the algorithms were developed

for any purposes and have validated specified and

limited datasets in many cases. Therefore, the generality

of the algorithms is not clear. Another reason for the

difficulty is that the validation of the algorithm needs

massive dataset.

Therefore, we developed a multi-agent-like

simulator for evaluating the collaborative filtering and it

is described in this paper.

II. Motivation

Recommender systems aim to recommend

preferable items to users from user profile [1][2][3]. The

profile is constructed by analyzing the content, user’s

voting and rating, and access logs, etc. Two types of

filtering algorithms are used for dynamic

recommendation: content-based filtering and

collaborative filtering [6]. Especially, collaborative

filtering is the most successful algorithms, and its

profile is based on relationships among users or items

[7]. It has an advantage wherein collaborative filtering

is applicable for any items because the algorithm does

not need to analyze the content itself. Also, the hybrid

algorithm combining collaborative filtering and content-

based filtering [8] has also been developed.

Generally, the recommender system algorithms work

better as the dataset that includes the user’s rating and

item information becomes more massive. However, the

algorithms do not work for a small dataset because the

dataset is insufficient for calculating similarity and

predicting items (called cold-start problems).

Therefore, developing the algorithms has various

problems associated with it. The first problem is a

limited dataset. To evaluate the algorithms, we need to

use various environments by collecting various datasets.

However, collecting the various datasets is difficult

because we generally do not make use of recommender

systems and do not have the data source. Therefore,

many researchers have utilized limited dataset such as

MovieLens Dataset and EachMovie Dataset. the

evaluation measurement may change according to the

goals of the algorithm. The algorithm is developed for

specified goals, and in order to evaluate the algorithm,

the proper evaluation measurements and data set are

needed [3]. Also, each method has strong/weak points,

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 691

Fig.1. Simulator architecture

Filtering
Algorithms

Agent

Items
Preferable
Attributes

Rating
Information

Item

Attributes

Recorder

Evaluation

Controller

Graph Library

Parameters
Rating Algorithm

Recommendation Rate recommended items

Simulator

Input parameters

Output Result

User & Item
Information

Recommender

and if we apply the algorithms for other goal, we cannot

easily judge whether any of the algorithms are suitable.

In order to identify the suitable algorithm, to compare

the algorithms is useful; however, an experiment with a

limited dataset and with different goals is difficult.

Therefore, we build the simulator to enable the

comparison of the algorithms. The requirements/goals

of simulator are defined as the followings.

1. The simulator can build the evaluation environment

for the recommender system.

2. The simulator can compare the filtering algorithms

of collaborative filtering and content-based filtering.

3. The simulator can output the results of evaluations

to compare the filtering algorithms.

III. OVERVIEW OF RECOMMENDER
SYSTEM SIMULATOR

This simulator consists of agents, items,

Recommender, Controller, and Recorder as shown in

Fig. 1. In this simulator, a simulator user gives the

number of agents, items, thresholds, and algorithms as

parameters. Agent acts as the user of recommender

systems, and the algorithm of collaborative filtering is

modeled into Recommender. Recommender has

information on agents and items’ ratings for each user.

Controller receives parameters from the simulator user

and handles the simulator such as initialization,

progression, and suspension. Controller accepts not only

the number of agents and items, but also thresholds for

the simulator environment, preference, and agent status.

The simulation steps are as follows:

1. The simulator user inputs parameters.

2. Controller initializes the status of the agents and

items and configures the simulator based on the

parameters.

3. Recommender calculates the user similarity and

recommends items to agents.

4. The agents vote on the rating of recommended

items and update the status.

5. Recorder compiles the result of recommendation

and evaluates the recommendation using several

measurements such as MAE, recall, precision,

novelty, diversity, and discovery [9][10].

6. Controller updates agent status and preference.

The simulator regards step 3 to step 6 as one turn,

and it goes through the steps and iterates the turns.

IV. ARCHITECHTURE OF SIMULATOR

1. Agents, Items, and Ratings

A. Definition of attributes

The key point of modeling recommender systems is the

preferences of agents for items. This paper assumes that

the agents and items have many attributes. Here, we

assume that the agents have specified preferable genres

and domain, and in order to express the assumption, the

simulator lets agents have a positive real number for all

attributes for their degree of preference. The simulator

also defines the attributes whose degree of preference is

over the preference threshold as preferable attributes. In

contrast, an item has the 0/1 flags for each attribute.

B. Rating items

In this simulator, the agents and Recommender

evaluate each item. For the agents, the rating rij of an

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 692

item j for an agent i is generally evaluated by the

formulation,

rij = A(Ui,Ij, ui)

Here Ui is the preferable attribute set of agent i. Also, Ij

is the attribute set of Item j whose value is 1. ui is the

information about agent. Also, we call the function an

rating algorithm. For an example of rating algorithm,

we can configure it as follows

௜௝ݎ ൌ
∑ ݑ

max ሺ ௜ܷሻ௨

ห ௜ܷ ת ௝หܫ

where |E| indicates the number of the elements of set E,

u is the elements of attributes of Ui corresponding to the

index of ௜ܷ ת I and max(Ui) indicates the maximum of

Ui, which is given by users as one of parameters.

On the other hand, Recommender, which is the

implementation of the filtering algorithm, predicts the

ratings of the items and recommends high-rated items to

the agents. For example, the predicted rating of an item

for the agent is generally shown in the following

formulation on collaborative filtering:

rij = R(sim(i, u) ,R)

,where rij is the rating of item j for user i, sim(u,v)

indicates the similarity between user/item u and

user/item v among a set of user U who evaluate the item

j, and R shows the rating information. For example,

GroupLens[4], which is a representative system using

collaborative filtering, has the following formula.










Uu

Uu uuj

iij
iusim

rriusim
rr

),(

)))(,((

In this formula, ݎ௜ is the average rating when a user i

has already voted.

C. Status of Agents

One of the problems that requires attention is the

tiresome status. This simulator allows agents to change

the status in order to express the degree to which an

agent is tiresome. In this simulator, agents have two

statuses, normal and tiresome, and the trigger of

changing status occurs in recommendation. The

measurement for tiresome is calculated concretely by

the evaluation formula, and when the measurement is

less than the tiresome threshold, the agent changes the

status to tiresome, otherwise it remains normal. The

simulator implements the following formula, which is

an example of the evaluation formula;

ݐ ൌ ෍
݊௜ݎ௔௝

ூא௜௜݇݊ܽݎ

Here, I is the set of recommended items from

Recommender, rij is the rating of item j by agent i which

is used for rating algorithm, ranki is the rank of the item

i, and ni is 0 if i has already been recommended;

otherwise it is 1.

2. Building Simulator environment

The configuration of the simulator environment is

one of the most important steps in the simulation

process because an inappropriate environment leads to

inappropriate and wasteful result.

The simulator environment is built during

initialization and is updated after the recommendation is

done. In order to configure the proper simulator

environment, we utilize the structural (topological)

features of the recommender system.

A. Initialize simulator environment from small world

 network.

Generally, communities tend to follow complex

networks and, according to several references, they find

that the networks tend to be small-world networks. Here,

a small world is a phenomenon in a real world network,

and the model has several features such as stability and

compression of network. The structure was first

formulated by Watts and Strogatz [10]. The structure

appears in several networks, and the trend also appears

in recommender system. Therefore, we create the

environment based on the small-world network.

If we restrict the community to the recommender

system, the network of the recommender system is

scale-free network like it is in References [11][12][13].

Therefore, we regard an agent as a node and initialize

agents and items according to generating a scare-free

network. The algorithm in detail is as follows, given n

agents and m items as simulation parameters from the

user,

1. Create the k-core clique in order to generate the

scale-free network, and allocate the C0 common items

among k nodes.

2. Add an agent (ai (i=1, 2, …, n)) to the network

according to the algorithm of BA(Barabasi-Albert)

model which is a scale-free network, and allocate the Cj

common items to the clique including ai. Note that  Cj

=m.

3. Iterate step 2 by allocating an.

4. Allocate the attributes of items to agents who have

items in common.

5. Let Recommender calculate the similarity between

the agents for recommendation.

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 693

B. Update simulator environment

The simulator needs to be update because the agents

may have new interests and because Recommender

identifies the new relationships between agents because

of the rating of recommended items by agents. In this

simulator, the agent’s preferences are updated by a

simple approach. When an agent regards an item as the

preferable items, then we can assume naturally that the

impression for the item is good. Therefore, when rij,,
which is the rating of item j by agent i, is over the

preferable item threshold, then agent regards the item as

the preferable item and the simulator adds a constant

value to the attribute of agents that corresponds to those

of the item.

On the other hand, Recommender has trouble

indentifying new relationships between agents because

the cost of calculation of similarity is normally very

high. In order to constrict the complexity of calculating

similarity, SketchSort, which is software for all pairs

similarity search, is useful [14]. The basic idea of

SketchSort is to combine Locality Sensitive Hashing

(LSH) and Multiple Sorting Method (MSM). SketchSort

takes as an input data points and outputs approximate

neighbor pairs within a distance. SketchSort is so quick

that the cost of calculating the similarity can be lower.

Here, In order to uses the SketchSort, the rating data of

agent is recorded by the matrix where the row indicates

items and column indicates the agents. However, most

agents have not evaluated many items yet so that the

simulator cannot build the matrix. Therefore, using

default voting [15] and filling the ratings of items which

a agent has not evaluated yet, we build the matrix and

utilize SketchSort for similarity calculation.

V. CONCLUSION

This paper has proposed a simulator to allow a user

to evaluate the algorithms for recommender systems. In

order to evaluate the algorithms, the simulator builds an

environment of a virtual recommender system based on

a complex network model from parameters;

Recommender makes recommendations to agents, and

the simulator evaluates and outputs the results though

Recorder. In future work, we will validate the simulator

by gaining a resurgence of the phenomenon of

collaborative filtering, and we will test the usability.

REFERENCES

[1] Resnick, P. and Varian, H.R., (1997). Recommender
systems. Commun. ACM, 40(3), 56-58.

[2] Adomavicius, G. and Tuzhilin, A., (2005). Toward
the Next Generation of Recommender Systems: A
Survey of the State-of-the-Art and Possible Extensions.
IEEE Transactions on Knowledge and Data Engineering,
17(6), 734-749.
[3] Saga. R., Tsuji, H, and Onoda, J., 2005. Agent
System for Notifying Hotel Room Reservation
Alternatives, Proc. of 11th International Conference on
Human Computer Interaction (HCII2005), Vol. 5, pp.
1-10, July 2005
[4]Resnick, P. et al., (1994). GroupLens: an open
architecture for collaborative filtering of netnews. In
Proceedings of the 1994 ACM conference on Computer
supported cooperative work. Chapel Hill, North
Carolina, United States: ACM, pp. 175-186.
[5]Sarwar, B. et al., (2001). Item-based Collaborative
Filtering Recommendation Algorithms. Proc. 10th
International Conference on the World Wide Web, 285-
-295.
[6]Pazzani, M. (1999). A Framework for Collaborative,
Content-Based and Demographic Filtering. Artificial
Intelligence Review. 13(5-6) 393-408.
[7]Linden, G., Smith, B. and York, J., (2003).
Amazon.com recommendations: item-to-item
collaborative filtering. Internet Computing, IEEE, 7(1),
76-80.
[8] Claypool, M., Gokhale, A., and Miranda, T. (1999).
Combining content-based and collaborative filters in an
online newspaper. In Proceedings of the SIGIR-99
workshop on recommender systems: algorithms and
evaluation.
[9]Herlocker, J.L. et al., (2004). Evaluating
collaborative filtering recommender systems. ACM
TRANSACTIONS ON INFORMATION SYSTEMS,
22(1), 5--53.
[10]Watts, D.J. and Strogatz, S.H. (1998). Collective
dynamics of 'small-world' networks. Nature 393 (6684):
409-410.
[11]Albert, R. and Barabasi, A., (2002). Statistical
mechanics of complex networks. Reviews of Modern
Physics, 74, 47-97.
[12]Martin-Buldú, J., Cano, P., Koppenberger, M.,
Almendral, J., Boccaletti, S. (2007). The complex
network of musical tastes. New Journal of Physics. 9,
[13] Cano, P., Celma, O., Koppenberger, M., Martin-
Buldú, J. (2006). The Topology of music
recommendation networks. Chaos An Interdisciplinary
Journal of Nonlinear Science. 16,
[14] Tabei, Y., Uno, T., Sugiyama, M., and Tsuda,
K.,(2010). Single versus Multiple Sorting in All Pairs
Similarity Search, The 2nd Asian Conference on
Machine Learning (ACML)
[15] Breese, J. S., Heckerman, D., and Kadie, C., (1998).
Empirical analysis of predictive algorithms for
collaborative filtering. In Proceedings of the fourteenth
conference on uncertainty in artificial intelligence,
Madison, Wisconsin.

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 694

