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Abstract: This paper proposes the development of a software simulator that allows a simulator’s users to evaluate 
algorithms for recommender systems. This simulator consists of agents, items, Recommender, Controller, and Recorder, 
and it locates the agents and allocates the items based on a small-world network. The agent plays a role in a user in 
the recommender system and the recommender plays a role in the recommender system. Controller handles the simu
lation flow that (1) Recommender recommends items to agents based on the recommendation algorithm, (2) each 
agent evaluates the items based on agents’ rating algorithm using each item’s and agent’s attribute, and (3)Recorder ob
tains the results of the rating and the evaluation measurement for the recommendation pertaining to such informatio
n as precision and recall. This paper discusses the background of proposal and the architecture of this simulator. 
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I. INTRODUCTION 

Recommender systems have been used for several 

applications and systems such as news sites, 

information sharing system, e-commerce and so 

on[1][2][3]. The systems offer benefits to consumer and 

item providers. These recommender systems help 

consumers in particular acquire new as well as 

preferable items and users can expect effective 

acquisition of the information. Therefore, an appropriate 

algorithm is needed for the recommender system. 

Several researchers have proposed and developed 

many algorithms since collaborative filtering, one of the 

most successful technologies for recommender systems, 

was introduced and attracted many attentions 

[4][5][6][7]. However, developing and applying the 

algorithm of collaborative filtering are difficult. One 

reason is based on the difficulty of evaluating these 

algorithms. For example, the algorithms were developed 

for any purposes and have validated specified and 

limited datasets in many cases. Therefore, the generality 

of the algorithms is not clear. Another reason for the 

difficulty is that the validation of the algorithm needs 

massive dataset.  

Therefore, we developed a multi-agent-like 

simulator for evaluating the collaborative filtering and it 

is described in this paper.  

II. Motivation 

Recommender systems aim to recommend 

preferable items to users from user profile [1][2][3]. The 

profile is constructed by analyzing the content, user’s 

voting and rating, and access logs, etc. Two types of 

filtering algorithms are used for dynamic 

recommendation: content-based filtering and 

collaborative filtering [6]. Especially, collaborative 

filtering is the most successful algorithms, and its 

profile is based on relationships among users or items 

[7]. It has an advantage wherein collaborative filtering 

is applicable for any items because the algorithm does 

not need to analyze the content itself. Also, the hybrid 

algorithm combining collaborative filtering and content-

based filtering [8] has also been developed. 

Generally, the recommender system algorithms work 

better as the dataset that includes the user’s rating and 

item information becomes more massive. However, the 

algorithms do not work for a small dataset because the 

dataset is insufficient for calculating similarity and 

predicting items (called cold-start problems).  

Therefore, developing the algorithms has various 

problems associated with it. The first problem is a 

limited dataset. To evaluate the algorithms, we need to 

use various environments by collecting various datasets. 

However, collecting the various datasets is difficult 

because we generally do not make use of recommender 

systems and do not have the data source. Therefore, 

many researchers have utilized limited dataset such as 

MovieLens Dataset and EachMovie Dataset. the 

evaluation measurement may change according to the 

goals of the algorithm. The algorithm is developed for 

specified goals, and in order to evaluate the algorithm, 

the proper evaluation measurements and data set are 

needed [3]. Also, each method has strong/weak points, 
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Fig.1. Simulator architecture 
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and if we apply the algorithms for other goal, we cannot 

easily judge whether any of the algorithms are suitable. 

In order to identify the suitable algorithm, to compare 

the algorithms is useful; however, an experiment with a 

limited dataset and with different goals is difficult. 

Therefore, we build the simulator to enable the 

comparison of the algorithms. The requirements/goals 

of simulator are defined as the followings.  

1. The simulator can build the evaluation environment 

for the recommender system. 

2. The simulator can compare the filtering algorithms 

of collaborative filtering and content-based filtering.  

3. The simulator can output the results of evaluations 

to compare the filtering algorithms. 

III. OVERVIEW OF RECOMMENDER  
SYSTEM SIMULATOR 

This simulator consists of agents, items, 

Recommender, Controller, and Recorder as shown in 

Fig. 1. In this simulator, a simulator user gives the 

number of agents, items, thresholds, and algorithms as 

parameters. Agent acts as the user of recommender 

systems, and the algorithm of collaborative filtering is 

modeled into Recommender. Recommender has 

information on agents and items’ ratings for each user. 

Controller receives parameters from the simulator user 

and handles the simulator such as initialization, 

progression, and suspension. Controller accepts not only 

the number of agents and items, but also thresholds for 

the simulator environment, preference, and agent status. 

The simulation steps are as follows: 

1. The simulator user inputs parameters. 

2. Controller initializes the status of the agents and 

items and configures the simulator based on the 

parameters.  

3. Recommender calculates the user similarity and 

recommends items to agents. 

4. The agents vote on the rating of recommended 

items and update the status. 

5. Recorder compiles the result of recommendation 

and evaluates the recommendation using several 

measurements such as MAE, recall, precision, 

novelty, diversity, and discovery [9][10]. 

6. Controller updates agent status and preference. 

The simulator regards step 3 to step 6 as one turn, 

and it goes through the steps and iterates the turns.  

IV. ARCHITECHTURE OF SIMULATOR 

1. Agents, Items, and Ratings 

A. Definition of attributes 

The key point of modeling recommender systems is the 

preferences of agents for items. This paper assumes that 

the agents and items have many attributes. Here, we 

assume that the agents have specified preferable genres 

and domain, and in order to express the assumption, the 

simulator lets agents have a positive real number for all 

attributes for their degree of preference. The simulator 

also defines the attributes whose degree of preference is 

over the preference threshold as preferable attributes. In 

contrast, an item has the 0/1 flags for each attribute.  

B. Rating items 

In this simulator, the agents and Recommender 

evaluate each item. For the agents, the rating rij of an 
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item j for an agent i is generally evaluated by the 

formulation,  

rij = A(Ui,Ij, ui) 

Here Ui is the preferable attribute set of agent i. Also, Ij 

is the attribute set of Item j whose value is 1. ui is the 

information about agent. Also, we call the function an 

rating algorithm. For an example of rating algorithm, 

we can configure it as follows 

௜௝ݎ ൌ
∑ ݑ

max ሺ ௜ܷሻ௨

ห ௜ܷ ת ௝หܫ
 

where |E| indicates the number of the elements of set E, 

u is the elements of attributes of Ui corresponding to the 

index of ௜ܷ ת I and max(Ui) indicates the maximum of 

Ui, which is given by users as one of parameters.  

On the other hand, Recommender, which is the 

implementation of the filtering algorithm, predicts the 

ratings of the items and recommends high-rated items to 

the agents. For example, the predicted rating of an item 

for the agent is generally shown in the following 

formulation on collaborative filtering: 

rij = R( sim(i, u) ,R) 

,where rij is the rating of item j for user i, sim(u,v) 

indicates the similarity between user/item u and 

user/item v among a set of user U who evaluate the item 

j, and R shows the rating information. For example, 

GroupLens[4], which is a representative system using 

collaborative filtering, has the following formula. 
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In this formula, ݎ௜ is the average rating when a user i 

has already voted.  

C. Status of Agents 

One of the problems that requires attention is the 

tiresome status. This simulator allows agents to change 

the status in order to express the degree to which an 

agent is tiresome. In this simulator, agents have two 

statuses, normal and tiresome, and the trigger of 

changing status occurs in recommendation. The 

measurement for tiresome is calculated concretely by 

the evaluation formula, and when the measurement is 

less than the tiresome threshold, the agent changes the 

status to tiresome, otherwise it remains normal. The 

simulator implements the following formula, which is 

an example of the evaluation formula; 

ݐ ൌ ෍
݊௜ݎ௔௝

ூא௜௜݇݊ܽݎ

 

Here, I is the set of recommended items from 

Recommender, rij is the rating of item j by agent i which 

is used for rating algorithm, ranki is the rank of the item 

i, and ni is 0 if i has already been recommended; 

otherwise it is 1.  

2. Building Simulator environment  

The configuration of the simulator environment is 

one of the most important steps in the simulation 

process because an inappropriate environment leads to 

inappropriate and wasteful result.  

The simulator environment is built during 

initialization and is updated after the recommendation is 

done. In order to configure the proper simulator 

environment, we utilize the structural (topological) 

features of the recommender system.  

A. Initialize simulator environment from small world

 network. 

Generally, communities tend to follow complex 

networks and, according to several references, they find 

that the networks tend to be small-world networks. Here, 

a small world is a phenomenon in a real world network, 

and the model has several features such as stability and 

compression of network. The structure was first 

formulated by Watts and Strogatz [10]. The structure 

appears in several networks, and the trend also appears 

in recommender system. Therefore, we create the 

environment based on the small-world network.  

If we restrict the community to the recommender 

system, the network of the recommender system is 

scale-free network like it is in References [11][12][13]. 

Therefore, we regard an agent as a node and initialize 

agents and items according to generating a scare-free 

network. The algorithm in detail is as follows, given n 

agents and m items as simulation parameters from the 

user, 

1. Create the k-core clique in order to generate the 

scale-free network, and allocate the C0 common items 

among k nodes.  

2. Add an agent (ai (i=1, 2, …, n)) to the network 

according to the algorithm of BA(Barabasi-Albert) 

model which is a scale-free network, and allocate the Cj 

common items to the clique including ai. Note that  Cj 

=m. 

3. Iterate step 2 by allocating an.  

4. Allocate the attributes of items to agents who have 

items in common. 

5. Let Recommender calculate the similarity between 

the agents for recommendation. 
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B. Update simulator environment 

The simulator needs to be update because the agents 

may have new interests and because Recommender 

identifies the new relationships between agents because 

of the rating of recommended items by agents. In this 

simulator, the agent’s preferences are updated by a 

simple approach. When an agent regards an item as the 

preferable items, then we can assume naturally that the 

impression for the item is good. Therefore, when rij,, 
which is the rating of item j by agent i, is over the 

preferable item threshold, then agent regards the item as 

the preferable item and the simulator adds a constant 

value to the attribute of agents that corresponds to those 

of the item. 

On the other hand, Recommender has trouble 

indentifying new relationships between agents because 

the cost of calculation of similarity is normally very 

high. In order to constrict the complexity of calculating 

similarity, SketchSort, which is software for all pairs 

similarity search, is useful [14]. The basic idea of 

SketchSort is to combine Locality Sensitive Hashing 

(LSH) and Multiple Sorting Method (MSM). SketchSort 

takes as an input data points and outputs approximate 

neighbor pairs within a distance. SketchSort is so quick 

that the cost of calculating the similarity can be lower. 

Here, In order to uses the SketchSort, the rating data of 

agent is recorded by the matrix where the row indicates 

items and column indicates the agents. However, most 

agents have not evaluated many items yet so that the 

simulator cannot build the matrix. Therefore, using 

default voting [15] and filling the ratings of items which 

a agent has not evaluated yet, we build the matrix and 

utilize SketchSort for similarity calculation. 

V. CONCLUSION  

This paper has proposed a simulator to allow a user 

to evaluate the algorithms for recommender systems. In 

order to evaluate the algorithms, the simulator builds an 

environment of a virtual recommender system based on 

a complex network model from parameters; 

Recommender makes recommendations to agents, and 

the simulator evaluates and outputs the results though 

Recorder. In future work, we will validate the simulator 

by gaining a resurgence of the phenomenon of 

collaborative filtering, and we will test the usability. 
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