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Abstract: An alternative brief proof of the Four Color Theorem without using a computer is described. The proof is 
essentially similar to the brief proof very recently described by the author as a bird’s-eye view, but is much more simple 
than that, and more importantly, differs from that in the way of vertex-reducing of complete triangulation graph. This 
new, most simple proof is much shorter than the recently described one, and both of these two proofs are far more 
easily understood than Appel and Haken’s proof in 1977. These new findings of non-computer-aided proofs clearly tell 
us about what the essential portion of the enormous complexity of the Four Colour Theorem is. 
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I. INTRODUCTION 

The Four-Colour Conjecture (FCC) concerning 
map-coloring first proposed by Guthrie [1], had long 
been one of the most difficult unsolved problems in 
mathematics. In 1977, Appel and Haken (A&H) [2] 
succeeded in proving the FCC using a computer. The 
question whether or not the Four-Colour Theorem 
(FCT) could be proved without using a computer has 
since arisen as a most important problem remaining to 
be solved. Very recently, I have presented the details of 
a bird’s-eye view of a very plausible brief proof of the 
FCT without using a computer [3]. In this paper, an 
alternative brief proof is described which is much more 
simple, although it is essentially similar to the brief 
proof described in Ohnishi (2009) [3], but considerably 
differs from that in the way of vertex-reducing of 
complete triangulation graph on sphere, S2.  
 

II. PRELIMINARIES 

In this section, some basic definitions useful for 
achieving a most simple proof of the FCT are described.  
“▌” denotes the end of each definition or theorem, 
whereas “█” denotes the end of each proof. 
  The following terms are defined as given in the 
previous paper [3]. 
    Jordan curve QQ’and its endpoints Q and Q’: see 
Definition 1 in ref. [3].  
    Internal and external domains ( int C, ext C, Int C, 
Ext C, where C is a closed Jordan curve.):  

see Theorem 1 in ref.[3].  
    Graph, vertex, spherical graph G(S2), connected 
graph: see Definitions 2 and 5 in ref.[3]. 
    Valency (degree) of a vertex P, written as val P : 
see Definition 3 in ref.[3]. 

    ν-colorable; ν-colored graph written as colν (G): 
see Definitions 8 in ref.[3].  
    colν (P)= a,(where P ∊  G), as denoting that vertex 
P is colored with a in colν (G): see  

Definitions 8 in ref.1. 
    Kempe-block, ab-Kempe-blocks written as Kab(Pi), 
Kab(Pi, Pj) in col4 (G): see Definition 10 in  

ref.[3].   
 
Definition 1: edge, adjacent:  Edge is defined as a 
Jordan curve connecting and excluding two vertices 
(which are end-points) P and P’. An edge e, connecting 
two vertices P and P’ is written as e = [P,P’]. A vertex P 
is called to be adjacent to P’, if a graph Γ  has an edge, 
[P,P’].  ▌ 
 
  Note that Definition 1 differs from the definition of 
“edge” given in the previous paper (see Definition 2 in 
ref.[3] ), and is identical to the definition of Berge [4]. 
Accordingly, some terms need to be re-defined based on 
Definition 1.  
  The next theorem is well-known as given in Ore [5].  
Theorem 1: If C is a closed Jordan curve on a sphere S2, 
then we have S2 = int C + ext C + C = Int C + Ext C – 
C. ▌ 
Definition 3: s-cycle, s-gon, s-path: An (s-)cycle is 
defined by a s-vertex-graph, C = Cs = Cs(e12,e23,…,es,1) 
= P1 + e12 + P2 + e23 + … + es-1,s + Ps + es,1. An (s-
)path is defined by U(P1,Ps) = Us(P1,Ps)= 
Cs(e12,e23,…,es,1) – es,1. Cs is also called s-gon (= s-
hedron) (e.g., poly-gon, di-gon, tri-angle, 
tetrahedron=quadrilateral, pentagon, etc.). ▌ 
Definition 4:  face: If G(S2) has a s-cycle (= s-gon), Cs, 
where int Cs = ø, then int Cs is called face (or s-gon 
face). ▌ 
  Thus we find S2 = int Cs + Cs + ext Cs.  
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Definition 5: (complete) triangulation: If G(S2) is a 
connected graph dividing S2 into exclusively triangular 
faces, G is called “complete triangulation (of S2)”. If 
“G(S2) = Cs” satisfies ext Cs = ø, and if G divides Int Cs 
into exclusively triangular faces, G is called 
“triangulation of s-gon, Cs”. ▌ 
 The next theorem is well-known [6,7,11], as described 
in [3]. 
Theorem 2:  Let T(S2) be an arbitrarily selected 
complete triangulation of S2. The four-color theorem 
(FCT) is equivalent to the statement that “Proposition A 
is true”, where Proposition A is given by;  
Proposition A: T(S2) is vertex four-colorable. ▌ 

 Definition 6: Two-faced quadrilateral ( Fig. 1): “Two-
faced quadrilateral with a diagonal edge e13” is defined 
as a subgraph of G(S2), and is given by Q2f = C4

0 + e13 
⊆ G, where C4

0 = C4(e12,e23, e34, e41), eij = [Pi, Pj], e13 

⊂ int C4
0, and e13 is a boundary edge dividing int C4 

into two triangular faces. Q2f is written as Q2f = 
Q2f(C4

0;e13). If Q2f in G(S2) has any edge, e’13 or e’24, 
satisfying e’13 = [P1,P3] ⊂ ext C4

0，or e’24 = [P2,P4] 
⊂ ext C4

0, then the Q2f is called “incomplete 
quadrilateral”, whereas it is called “complete 
quadrilateral” if there is none of such edges. G(S2) 
having its sub-graph Q2f

0 =Q2f(C4
0;e13) is written as G = 

G(Q2f
0;C

4
0 ). ▌ 

 

       
 
Fig.1  Two-faced quadrilateral, Q2f(C4

0;e13), where C4
0 

is a 4-cycle (= quadrilateral) given by C4
0 = 

C4(e12,e23,e34,e41), eij = [Pi,Pj], e13 ⊂ int C4
0. {Q2f} is 

an unavoidable (one-element-)set of subgraphs in Tk(S
2), 

a complete triangulation of S2 withk vertices (k≥4). see 
Definition 6. 
 
 

III. BASIC THEOREMS 

The following basic theorems are useful for proving the 
FCT.  
Theorem 3:  For an ab-Kempe-block, Kab(Pi, Pj) ∊  
G(S2), where Pi and Pj ∊  G(S2), there exists a 2-
coloured path Uab(Pj,Pj) as a subgraph of the 2-coloured 
graph, Kab(Pi, Pj). ▌ 
[Proof] Evident from the definitions of connected 

graph (Definition 5 in ref.[3].) and vertex 2-colored 
graph (Definition 8 in ref.[3].). █ 
  This theorem means that Pi and Pj are connected by a 
2-coloured Jordan curve, Uab(Pj,Pj), which is a 2-
coloured path. 

Theorem 4:  Let Tk(S
2) be a complete triangulation of 

S2, having k vertices (k ≥ 4). Then there exists at least 
one quadrilateral given by Q2f

k,0 = Q2f(C4
k,0;e13)⊂ Tk, 

where C4
k,0 = C4(e12,e23,e34,e41), e13⊂ int C4

k,0, and eij 

=[Pi, Pj]. Furthermore, Q2f
k,0 satisfies val P1 ≥3, val P3 

≥3, val P2 ≥2, and val P4 ≥2. ▌ 
 [Proof] Let e13 (= [P1,P3]) be an arbitrarily selected 
edge of Tk(S

2), then we find two cases (i) and (ii), as 
below;  
(i) In the case where one or more 2-cycles exist as 

subgraph(s) of Tk (S
2)（k≧4 as shown in Fig. 2[A]. Let 

an arbitrarily selected 2-cycle be C2
k(e13, e’31), where eij 

= [Pi,Pj], then one finds that the edge e13 is a boundary 
of two 3-gon (triangular) faces, whose boundaries are 3-
cycles, C3(e12, e23, e31) and C3(e13, e34, e31) (where eij = 
[Pi,Pj].), as shown in Fig.1 [A]. Thus there exist a 
quadrilateral, G = G(Q2f

0;C
4
0 ), where C4

0 = C4(e12, e23, 
e34, e41), and e13 is a diagonal edge. Since C2

k(e13, e’31) is 
a closed Jordan curve, there does not exist e34 = [P3,P4]. 
Then it follows that val P1≧4，val P3≧4，val P2≧2，
val P4≧2． 
(ii) In the case where any 2-cycle does not exist as 

subgraph of Tk(S
2). By letting an arbitrarily selected 

edge be denoted by e13 = [P1,P3], P2 and P4 are found to 
be different two vertices (See Fig 2[B]), since an 
identical single vertex of P2 and P4 means the existence 
of a 2-cycle, C2(e12, e21), which is in conflict with the 
case (ii), and belongs to the case (i). In case (ii), we thus 
find a quadrilateral, G = G(Q2f

0;C
4
0 ), where C4

0 = 
C4(e12, e23, e34, e41), and e13 is a diagonal edge, as shown 
in Fig. 2[B], satisfying val P1≧3，val P3≧3，val P2≧
3，val P4≧3． 
 Thus we find that there exist a quadrilateral, G = G(Q2f

0;C
4
0 ), where C4

0 = C4(e12, e23, e34, e41), and e13 is a diag
onal edge, and val P1≧3，val P3≧3，val P2≧2，
val P4≧2．█  
 

 
Fig. 2.  Proof of Theorem 3.1 showing the existence of two-

faced quadrilateral in Tk(S
2)（k≧4）  

[A] The case (i) where a 2-cycle, C2
k(e13, e’31), exists as a 

subgraph of Tk (S2)（k≧4）.（val P1≧4，val P3≧4，val 
P2≧2，val P4≧2 ）． [B] The case where any 2-cycle does 
not exist as a subgraph of Tk (S

2)（k≧4）,（ val P1≧3，val 
P3≧3，val P2≧3，val P4≧3 ）. 

Lemma 4.1:  In Theorem 4, a set, {Q2f
k } is an 
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unavoidable set (See [6,8] for definition.) of sub- 
graphs in Tk (S

2), and consists of only one element being 
a quadrilateral. ▌ 
 [Proof] Evident from Theorem 4. █ 
Theorem 5 :  For an arbitrarily selected four-colorable 
complete triangulation graph with k vertices, Tk(S

2) 
(k≥4 ), let col4

0(Tk) be a 4-coloured graph of Tk. 
Concerning an arbitrarily selected quadrilateral Q2f

k,0 
=Q2f (C4

k,0 ; e
(k)

13)  ( ⊂ Tk ), where C4
k,0 = 

C4(P1
(k),P2

(k),P3
(k),P4

(k)) and e(k)
13 = [P1

(k),P3
(k) ] ⊂ int 

C4
k,0, col4

0 (Tk) belongs to either one of the two types, 
type I and type II, defined by:  
  type I:  Kac(P1

(k),P3
(k)) (⊂col4(Tk; Q

2f
0 ) exists.  

  type II:  Kac(P1
(k),P3

(k)) (⊂col4(Tk; Q2f
0 ) does not 

exist.  ▌ 
[Proof] Evident. █ 

Definition 6 : (case I and case II 4-colorations) Let 
col4

Ι(Tk;Q
2f

0) and col4
ΙΙ(Tk;Q

2f
0) denote 4-colored 

complete triangulation graph of case I and that of case II 
(in Theorem 5), respectively. ▌ 
 
 

III. FINAL PROOF 

Definition 7 (Vertex-reducing operations f1 and f2 ): 
Definitions, f1 and f2, (and there reverse operations f1

-1 
and f2

-1 ), are given by Definition 12 in ref.[3]. 
Suboperations f1a, f1b and f2a f2b satisfying f1 = f1b(f1a), 
and f2 = f2b(f2a) are defined as schematized in Fig.3 and 
Fig.4 ▌ 
Theorem 6.  Let a complete triangulation Tk(S

2) be 
four-colorable (k≥4 ), then Tk-1(S

2) defined by Tk-1 = Tk-

1( Tk; Q
2f

k,0) = f (Tk; Q
2f

0 ) is four-colorable, where Q2f
k,0 

=Q2f (C4
k,0 ; e

(k)
13) ⊂ Tk, C

4
k,0 = C4(P1

(k),P2
(k),P3

(k),P4
(k)), 

and e(k)
13 = [P1

(k),P3
(k) ] ⊂ int C4

k,0, and further, f 
denotes a operation given by f = f1 or f2 for type I or 
type II 4-coloration of Tk(Q

2f
0, e

(k)
13), respectively. Then 

Tk-1( Tk; Q
2f

k,0) is 4-colourable. ▌ 
 [Proof] Let col4(Tk; Q2f

0 ) be a 4-coloured graph of 
Tk(S

2). Vertex-recucing operations of col4(Tk; Q2f
0 ) are 

as below; 
  Case I:  If col4(Tk; Q2f

0 ) is type I in Theorem 5, then 
operation of graph modification f1(Tk; Q

2f
0 ) = f1b( f1a(Tk; 

Q2f
0 ) ) gives a reduced triangulation graph Tk-1( Tk; 

Q2f
k,0) and its 4-coloured graph, col4

Ι(Tk-1; Q2f
k,0), as 

shown in Fig.3. Note that Tk-1( Tk; Q
2f

k,0) and col4
Ι(Tk-1; 

Q2f
k,0) are defined by Tk(S2) and col4(Tk; Q2f

0 ), 
respectively. Thus Tk-1 = f1(Tk; Q

2f
0 ) is 4-colourable.  

  Case II:  If col4(Tk; Q2f
0 ) is type II in Theorem 5, 

then operation of graph modification f2(Tk; Q2f
0 ) = 

f2b( f2a(Tk; Q
2f

0 ) ) gives a reduced triangulation graph Tk-

1( Tk; Q
2f

k,0) and its 4-coloured graph, col4
ΙΙ(Tk-1; Q

2f
k,0), 

as shown in Fig.4. Note that Tk-1( Tk; Q
2f

k,0) and col4
Ι(Tk-

1; Q2f
k,0) are defined by Tk(S2) and col4(Tk; Q2f

0 ), 
respectively. Thus Tk-1 = f1(Tk; Q

2f
0 ) is 4-colourable.  

  Acordingly, Tk-1( Tk; Q
2f

k,0) is 4-colourable. █  
 
 

 
Figure 3. Reversible vertex-reduction and its reverse 
operation of a 4-coloured complete triangulation graph, 
col4

0(Tk ; Q2f
k,0) in case I, where there exists an ac-

Kempe block, Kac(P1, P3), in Ext C4
k,0. The left and right 

schematized col4
0,I(Tk; Q2f

0 ) and col4
0,Ι(Tk-1; Q2f

k,0), 
respectively. (From Fig. 4 in [3] ) 
 
 

 
Figure 4. Reversible vertexreduction and its reverse ope
ration of a 4coloured complete triangulation graph, col4

0

(Tk ; Q
2f

k,0)  in case II, where there does not exist any  
acKempe block, Kac(P1,P3), in Ext C4

k,0. The left and  
right schematized col4

0,II(Tk; Q
2f

0 ) and col4
0,ΙΙ(Tk-1;  

Q2f
k,0), respectively. (From Fig.5 in [3]) 

 
 
Theorem 7. Let Tk(S2) be 4-colourable, then there
exists a series of 4-coloured complete triangulation 
graphs,{ col4

0(Tk ; Q2f
k,0), col4

0(Tk-1; Q2f
k,0), … , col4

0 
(T4 ; Q2f

5,0), col4
0(T3 ; Q2f

4,0) }, where col4
0(Tk-i ;    

Q2f
k-i+1, 0)  ( i=1,2, … , k-3) is defined by Tk-i =    

f(Tk-i+1; Q2f
k-i,0 ), where f = fI (for type I coloration of  

Tk-i+1 ) or fII (for type II coloration of Tk-i+1 ), and   
Q2f

k-i+1,0 is an arbitrarily selected quadrilateral of     
Tk-i+1. ▌ 
[Proof]  From theorm 6, col4

0(Tk-i ; Q2f
k-i+1,0)  =  

f (col4
0(Tk-i+1 ; Q2f

k-i+1,0) ). Repeated  applications of  
this equation to Tk(S2), for i = 1,2, …, k-3, we obtain a 
series of 4-coloured complete triangulations,  { col4

0 
(Tk ; Q2f

k,0), col4
0(Tk-1 ; Q2f

k,0), … , col4
0(T4 ; Q2f

5,0),  
col4

0(T3 ; Q2f
4,0) }. Note that col4

0(T3 ; Q2f
4,0) is a 4-

coloured 3-gon graph (3-vertex complete graph)  
whose coloration depends on col4

0(Tk ; Q2f
k,0). █ 

Lemma 7.1: The necessary condition for a 
complete The necessary condition for a complete triang
ulation graph, Tk(S

2), (k≥4 ), to be four colorable is the e
xistence of col4

0(T3 ; Q2f
4,0), defined in Theorem 7. ▌ 

 [Proof] Evident from theorem 7. █ 
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Lemma 7.2: The necessary condition for a complete 
triangulation graph, Tk(S

2), (k≥4 ), to be four colorable, 
defined in Lemma 7.1 is satisfied. ▌ 
 [Proof] col4

0(T3 ; Q2f
4,0) is a 4-coloured 3-gon graph 

(3-vertex complete graph) whose coloration depends on 
col4

0(Tk ; Q2f
k,0). Therfore, col4

0(T3 ; Q2f
4,0) really exists 

as one of the 4x3x2 = 24 4-colorations of the 3-gon 
graph. █ 
Theorem 8. For a given coloration, col4

0(T3 ; Q2f
4,0), 

which is one of the 24 possible coloration of trigon, 
col4

0(T4 ; Q2f
5,0), given inTheorem 7 can be 

reconstructed from col4
0(T3 ; Q2f

4,0). ▌ 
[Proof] Since col4

0(T3 ; Q2f
4,0) really exists from 

Lemma 7.1, then col4
0(T4 ; Q2f

5,0) can be reconstructed 
by col4

0(T4 ; Q2f
5,0) = f-1 (col4

0(T3 ; Q2f
4,0)), because the 

operation f defined in Fig. 3 is reversible graph 
modification. Thus, by applying col4

0(T4 ; Q2f
5,0) = f-1 

(col4
0(T3 ; Q2f

4,0)) for all of the possible operations of f-1, 
there exists at least one operation generating col4

0(T4 ; 
Q2f

5,0), whether or not T4, Q2f
4,0, and col4

0(T3 ; Q2f
4,0) are 

known. █ 
Lemma 8.1. For a given coloration, col4

0(Tk-i ; Q2f
k-

i+1,0) ( i=k-3, k-4, …, 2, 1), defined by Theorem 8, 
col4

0(Tk-i+1 ; Q2f
k-i+2,0) given inTheorem 7 can be 

reconstructed from col4
0(Tk-i ; Q2f

k-i+1,0). ▌ 
 [Proof] Since col4

0(Tk-i ; Q2f
k-i+1,0) really exists, from 

Lemma 7 .2, for i = k-4, col4
0(T5 ; Q2f

6,0) can be 
reconstructed by col4

0(T5 ; Q2f
6,0) = f-1 (col4

0(T4 ; Q2f
5,0)), 

because the operation f defined in Fig. 3 is reversible 
graph modification. Thus, by applying col4

0(T5 ; Q2f
6,0) 

= f-1 (col4
0(T4 ; Q2f

5,0)) for all of the possible operations 
of f-1, there exists at least one operation generating 
col4

0(T5 ; Q2f
6,0), even if T5, Q2f

6,0, and col4
0(T5 ; Q2f

6,0) 
are unknown.   
Similarly, for k-4 ≤ i ≤ 2, when col4

0(Tk-i ; Q2f
k-i+1,0) 

can be known to exist by col4
0(Tk-i ; Q2f

k-i+1,0) = f-1 

(col4
0(Tk-i-1 ; Q2f

k-i,0)), col4
0(Tk-i+1 ; Q2f

k-i+2,0) can be 
reconstructed by col4

0(Tk-i+1 ; Q2f
k-i+2,0) = f-1 (col4

0(Tk-i ; 
Q2f

k-i+1,0)), because the operation f defined in Fig. 3 is 
reversible graph modification. Thus, by applying 
col4

0(Tk-i+1 ; Q2f
k-i+2,0) = f-1 (col4

0(Tk-i ; Q2f
k-i+1,0)) for all 

of the possible operations of f-1, there exists at least one 
operation generating col4

0(Tk-i+1 ; Q2f
k-i+2,0), even if T5, 

Q2f
6,0, and col4

0(T5 ; Q2f
6,0) are unknown. 

 The final similar application of col4
0(Tk-i ; Q2f

k-i+1,0) = 
f-1 (col4

0(Tk-i-1 ; Q2f
k-i,0)), for i = 0, it follows that 

col4
0(Tk ; Q2f

k,0) = f-1 (col4
0(Tk-1 ; Q2f

k,0)), as shown in 
Fig.4 and Fig.5. Thus the initial coloration of col4

0(Tk ; 
Q2f

k,0) has now been reconstructed. █ 
Lemma 8.2. The sufficient condition for a complete 

triangulation graph, Tk(S
2), (k≥4 ), to be four colorable 

is the existence of col4
0(T3 ; Q2f

4,0), defined in Theorem 
7. ▌ 
  [Proof] If there exists col4

0(T3 ; Q2f
4,0), defined in 

Theorem 7, by applying col4
0(Tk-i ; Q2f

k-i+1,0) = f-1 

(col4
0(Tk-i-1 ; Q2f

k-i,0)), for i = k-4, k-5, …, 1, col4
0(Tk-i ; 

Q2f
k-i+1,0) can be reconstructed even if Tk-i, Q2f

k-i+1,0, and 
col4

0(Tk-i-1 ; Q2f
k-i,0) are unknown. This means that The 

sufficient condition for for a complete triangulation 

graph, Tk(S
2), (k≥4 ), to be four colorable is the 

existence of col4
0(T3 ; Q2f

4,0). █ 
Theorem 9. The necessary and sufficient condition for 

a complete triangulation graph, Tk(S
2), (k≥4 ), to be four 

colorable is the existence of col4
0(T3 ; Q2f

4,0), defined in 
Theorem 7. ▌ 
[Proof] Evident from Lemma 7.1 and Lemma 8.2. █ 

Lemma 9.1. The necessary and sufficient condition 
(defined in Theorem 9) for a complete triangulation 
graph, Tk(S

2), (k≥4 ), to be four colorable, is satisfied. ▌ 
[Proof] In theorem 9, col4

0(T3 ; Q2f
4,0) really exist as 

one of the 4x3x2 = 24 colorations with 4 colours. Thus 
we have reached Lemma 9.1. █ 
Theorem 10. (The Four-Colour Theorem): Every 

complete triangulation graph, Tk(S2) (k≥3) is four-
colourable. ▌ 
[Proof] Evident from Lemma 9.1. █ 
 
 

III. REFERENCES 

[1] Guthrie F (1880), Notes on the colouring maps. 
Proc.R. Soc. Edinburgh 10: 727-728. 
[2] Appel K et al. (1977), Every planar map is four 
colorable. Parts I, II. Ill. J. Math. 21: 429-489, 490-597. 
[3] Ohnishi K (2009), Towards a brief proof of the 
Four-Color Theorem without using a computer. Artif. 
Life Robotics 14(4):551-556. 
[4] Berge C (1970), Graphe et hypergraphes. Dunod, 
Paris. 
[5] Ore O (1967), The Four-Color Problem. Academic 
Press, New York.  
[6] Hitotsumatsu S (1978), Yon-shoku Mondai (The 
Four Colour Theorem). Kodansha, Tokyo (in Japanese). 
[7] Saaty TL and Kainen PC (1977), The Four Color 
Problem. assaults and conquest. McGraw Hill 
International Company, New York. 
[8] Wilson R (2002), Four colours suffice: how the map 
problem was solved. Penguin Books, London. 
 
Acknowledgements: Valuable discussions with Dr. 

Shigeki Akiyama (Department of Mathematics, Niigata 
University) are acknowledged. This study was partly 
funded by the financial support of the Uchida Energy 
Science Promotion Foundation, No. 131520. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11), 
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 662




