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Abstract
This paper describes mixed constrained image filter de-

sign with fault tolerant using Particle Swarm Optimization
(PSO) on a reconfigurable processing array. There may
be some faulty Configurable Logic Blocks (CLBs) in a re-
configurable processing array. The proposed method with
PSO autonomously synthesizes a filter fitted to the recon-
figurable device with some faults, to optimize the complex-
ity and power of a circuit, and signal delay in both CLBs
and wires. An image filter for noise reduction is experi-
mentally synthesized to verify the validity of our method.
By evolution, the quality of the optimized image filter on
a reconfigurable device with a few faults is almost same as
that with no fault.

Keywords
Particle Swarm Optimization, Mixed Constrained Im-

age Filter Design, Fault Tolerant

1 Introduction
The image filter design problem is often approached by

means of evolutionary design techniques. In addition to an
optimization of filter coefficients (for example, [1]), evolu-
tionary approaches are applied to find a complete structure
of image filters. In [2], Gaussian noise filters were evolved
using a variant of Cartesian Genetic Programming in which
target filters were composed of simple digital components,
such as logic gates, adders and comparators. A few years
later, image filters for other types of noise and edge detec-
tors were evolved using the same technique [3, 4, 5]. But
there were few discussions about fault-tolerance for an im-
age filter design.

Recently chip integration is higher and higher, so that
it increases the probability of faulty components and the
complexity of designs increases the probability of human
errors. The tolerance for faults is diminishing as the sys-
tems are demanded for high reliability. Therefore, the
needs for fault-tolerant designs are stated as the long-term
grand challenges in [6]. To solve this problem, we pro-
posed a fault-tolerant image filter design using GA (Ge-
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Figure 1: The overview of our method.

netic Algorithm) [8], and the experimental results showed
that the resultant image filter was surely fault-tolerant. But
the problems of quality and processing time still remain,
and which evolutionary method (such as GA, GP (Genetic
Programming), PSO (Particle Swarm Optimization) and
ACO (Ant Colony Optimization)) is most suitable has not
been investigated.

This paper describes an efficient image filter design for
noise reduction using PSO on a reconfigurable process-
ing array, where some faulty Configurable Logic Blocks
(CLBs) may exist at random. The mixed constrained on
circuit complexity, power and signal delay in both logic
blocks and wires are optimized. In this design, first, the
evaluating value about correctness, complexity, power and
signal delay are introduced to the fitness function. Then
PSO autonomously synthesizes an image filter which is
simple and has better performance and fits to the recon-
figurable processing array with some faults. To verify the
validity of our method, an image filter for noise reduction
is experimentally synthesized.

The organization of this paper is as follows: a brief
overview of PSO is described in the next section. Section
3 describes fault-tolerant design optimization for an image
filter using PSO. Section 4 shows the experimental results.
Finally, Sect. 5 concludes this paper.
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2 Particle swarm optimization
PSO is an algorithm model on swarm intelligence that

finds a solution to an optimization problem in a search
space.

In PSO, a particle represents a candidate solution to
the problem. Each particle is treated as a point in the
D-dimensional problem space. The i-th particle is rep-
resented as Xi = (xi1, xi2, · · · , xiD). The best previ-
ous position (the position giving the best fitness value)
of the i-th particle is recorded and represented as Pi =
(pi1, pi2, · · · , piD). The index of the best particle among
all the particles in the population is represented by the sym-
bol g. The rate of the position change (velocity) for particle
i is represented as Vi = (vi1, vi2, · · · , viD). The particle is
updated according to the following equations:

v
(t+1)
id = w ∗ v

(t)
id + c1 ∗ rand() ∗ (pid − x

(t)
id )

+c2 ∗Rand() ∗ (pgd − x
(t)
id ), (1)

x
(t+1)
id = x

(t)
id + v

(t+1)
id . (2)

where,
0 ≤ i ≤ (n− 1), 1 ≤ d ≤ D.

n: number of particles in a group.

D: number of members in a particle.

t: pointer of iterations (generations).

w: inertia weight factor.

c1, c2: acceleration constant.

rand(), Rand(): uniform random value in the range [0,1].

v
(t)
id : velocity of particle i at iteration t, V min

id ≤ v
(t)
id ≤

V max
id .

x
(t)
i : current position of particle i at iteration t.

The inertia weight factor w is employed to control the
impact of the previous history of velocities on the current
velocity, thereby influencing the trade-off between global
(wide-ranging) and local (fine-grained) exploration abili-
ties of the “flying points”. A larger w facilitates global
exploration (searching new areas) while a smaller w tends
to facilitate local exploration to free-tune the current search
area. Good values of w are usually slightly less than 1 [7].
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Figure 2: A reconfigurable processing array with faults.

3 Image filter design using PSO
PSO is applied to search good solutions to optimize the

image filter design on a reconfigurable processing array
with some faults.

The resultant image filter has an identical functional be-
havior with less circuit complexity, less power and less sig-
nal delay.

3.1 Image Filter

Every image operator is considered as a digital circuit
with nine 8-bit inputs and a single 8-bit output, which pro-
cesses gray-scaled (8-bit/pixel) images.

Every pixel value of the filtered image is calculated us-
ing a corresponding pixel and its eight neighbors in the pro-
cessed image [4, 5].

3.2 Reconfigurable Processing Array for Image
Filter

The reconfigurable image filter is implemented as a Vir-
tual Reconfigurable Circuits (VRC) (Fig. 2) originally pro-
posed in [4]. As a new pixel value is calculated using nine
pixels, the VRC has got nine 8-bit inputs and a single 8-bit
output. The VRC consists of two-input Configurable Logic
Blocks (CLBs) placed in an array. In our proposed, a 6 ∗ 4
array is need because its size is enough for our image filter
from the results in paper [8]. Any input of each CLB may
be connected to either a primary circuit input or the output
of a CLB in the preceding column. Any CLB can be pro-
grammed to implement one of the functions given in Table
1 [8, 9], all these functions operate with 8-bit operands and
produce 8-bit results.

The CLB with different function, has different complex-
ity, power and signal delay. We newly define the values
of complexity (FC), power (FP) and signal delay (SD) for
each function in a CLB, as in Table 1.

As shown in Fig. 2, the coordinates of inputs and output
of each logic block are defined based on VRC, so that we
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Table 1: Functions implements in a CLB.
ID Function Description FC FP SD
0 255 Constant 8 5 1
1 x Identity 16 10 2
2 255− x Inversion 24 15 3
3 x ∨ y Bitwise OR 32 20 3
4 x ∨ y Bitwise x OR y 40 25 4
5 x ∧ y Bitwise AND 32 20 3
6 not(x ∧ y) Bitwise NAND 40 25 4
7 x⊕ y Bitwise XOR 64 38 4
8 x À 1 Right shift by 1 15 9 2
9 x À 2 Right shift by 2 14 8 2

10 (x ¿ 4) ∨ (y À 4) Swap 16 10 2
11 x + y + (addition) 358 215 18
12 x +s y + with saturation 367 220 19
13 (x + y) À 1 Average 350 210 18
14 max(x, y) Maximum 240 145 16
15 min(x, y) Minimum 240 145 16
- (wire) (wire) 16 10 2

FC: function complexity.
FP : function power.
SD: signal delay.

can calculate the critical length of connection wires.
There may be some faulty CLBs in a reconfigurable pro-

cessing array at random. The output of a faulty CLB is a
value in the range [0,255] at random.

3.3 Genetic encoding
The chromosome (particle) is a string of integers where

each three continuous integers constitute a logic block.
Each triplet in the chromosome encodes the two inputs and
the function type of a logic block, respectively, such as:

(Input 1, Input 2, Function type).

A typical chromosome then can be a sequence of
triplets, such as:

Xi = ((IN1
1 , IN1

2 , F 1
type) · · · (IN i

1, IN i
2, F

i
type) · · · )

Here, IN i
1 and IN i

2 mean positions of the correspond-
ing input signal. F i

type means function type of logic block.
For primary input, 0 ≤ IN i ≤ 8. For input from output of
a logic block CLBm shown in Fig. 2, IN i = m. Function
in a CLB is defined as shown in Table 1.

3.4 Fitness function
The pixels of corrupted image ci are used as inputs of

VRC. Pixels of filtered image fi are generated, which are
compared to the pixels of original image oi.

The design objective is to minimize the difference be-
tween the filtered image and the original image. The image
size is nc∗nr pixels, but only the area of (nc−2)∗(nr−2)
pixels is considered, because the pixel values at the borders

are ignored, and thus remain unfiltered. The fitness value
of a candidate filter is obtained as follows:

(1) the VRC is configured using a candidate chromo-
some,

(2) the created circuit is used to produce pixel values in
the image fi, and

(3) the fitness value is calculated as

Fitness = (−1) ∗ (F1 ∗ β + F2). (3)

where,
F1 and F2 are defined as follows and β is the weight on

F1.

F1 =
nc−2∑

i=1

nr−2∑

j=1

(|fi(i, j)− oi(i, j)|).

(4)

where,

nc: the number of columns of the pixels in the image.

nr : the number of rows of the pixels in the image.

fi(i , j ): the pixel (i, j) in filtered image fi, the value range
is [0,255].

oi(i , j ): the pixel (i, j) in original image oi, the value
range is [0,255].

F2 = SD ∗ αsd + Pg ∗ αpg + Cg ∗ αcg

+Pw ∗ αpw + Cw ∗ αcw.

(5)

where,

SD: signal delay of a circuit individual, determined by a
critical path.

Pg: power of logic blocks in a circuit, calculated by sum-
mation of all logic block’s power.

Cg: complexity of logic blocks in a circuit, calculated by
summation of all logic block’s complexity.

Pw: power of all wires in a circuit, calculated by summa-
tion of all wire’s power.

Cw: complexity of wires in a circuit, calculated by sum-
mation of all wire’s complexity.

αsd, αpg, αcg, αpw, αcw: the weights on SD, Pg, Cg,
Pw, Cw, respectively.
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Table 2: Conditions for evolution.

Number of Generation : 300
Population Size : 1210
Inertia weight factor w : 0.9.
Limit of change in velocity of each member in an individual:
V max

id = 0.5 ∗ pmax
id , V min

id = −0.5 ∗ pmax
id .

Acceleration constant : c1 = 2, c2 = 2.

Figure 3: Elite fitness of PSO (Y-axis) vs. the number of
generations (X-axis).

The priority of evaluating values in Eq. (3) is: F1 > F2.
In this experiment, β is set to 0.1 ∗ 109. The priority of
evaluating values in Eq. (5) is: SD > Pg > Cg > Pw >
Cw. In this experiment, αsd is set to 0.1 ∗ 109, αpg is set
to 0.1 ∗ 106, αcg is set to 1 ∗ 103, αpw is set to 100, and
αcw is set to 1. All α’s and β are empirically assigned in
our experiment.

4 Experimental results
Table 2 shows the parameters of the evolution of PSO

used in this experiment. Some preliminary experiments
were performed in advance to decide parameters suitable
for our experiment.

The proposed method was implemented in Eclipse SDK
3.5.1 with Java Runtime Environment(JRE) 1.6.0; and
tested on a PC with Inter(R) Core(TM) i7 CPU at 3.33 GHz
and 9.0 GB RAM.

The image filter is evolved for a 512 ∗ 512 Lena image
corrupted by 5% salt-and-pepper noise, shown in Fig. 5
(a).

Fig. 3 shows the elite fitness of PSO vs. the number
of generations during the image filter evolution. The elite

fitness is increasing during evaluation time.
Table 3 shows the results on a reconfigurable processing

array with different faults. For each case, we execute over
10 independent trials. “Available” means the number of
available CLBs. “Best one” means the best optimized im-
age filter in terms of Mean Difference Per Pixel (MDPP)
[10] among 10 trials, “Average” the average values of 10
individuals, and “Worst one” the worst optimized image
filter among 10 trials. The number of used CLBs, the value
of the MDPP and running time are listed. “Ratio” is the
relative value of MDPP of each case compared to that of
no fault Faults(0). The larger the fitness is, the better the
quality of image filter is. The less the MDPP value is, the
better the quality is. The less the ratio is, the better the
quality is.

The quality of the optimized image filter on a recon-
figurable processing array with a few faults (2-4 faults) is
almost same as that on a reconfigurable processing array
with no fault, that is less than 12.6% in the item of differ-
ent value of MDPP of the best one.

The quality of the optimized image filter of Fault(2)
is only 1.2% less than that of Fault(0) in the item of the
MDPP value of the best one.

An example of chromosome of best one of fault(2) is
as follows:

(0, 0, 0)(0, 0, 0)(1, 4, 15)(8, 0, 0)(0, 0, 0)(0, 0, 0)
(11, 12, 11)(11, 0, 0)(0, 0, 0)(0, 0, 0)(0, 0, 0)(15, 7, 5)
(0, 0, 0)(0, 0, 0)(0, 0, 0)(4, 20, 14)(0, 0, 0)(0, 0, 0)
(0, 0, 0)(0, 0, 0)(16, 24, 11)(0, 0, 0)(0, 0, 0)(0, 0, 0)

The graphical representation of this chromosome is
shown in Fig. 4.

As the used Lena image size is relatively large, we can
say that the resultant evolved filter is general purpose for
the same type of noise, that is the filter is able to remove the
same type of noise also from other images. Therefor, the
image filter was first evolved using Lena image and then
tested on other images.

Figures in Fig. 5 show the input image with 5% salt-
and-pepper noise, the MDPP value of these images are
6.33, 6.39 and 6.28, respectively. Figures in Fig. 6 show
the output image by the image filter of Fig. 4, the MDPP
value of these images are 1.74, 1.42 and 1.76, respectively.
Obviously, this image filter could reduce noise for all cases,
even if there are two faulty CLBs.

5 Conclusions
This paper described mixed constrained image filter de-

sign with fault tolerance for noise reduction using PSO on
a reconfigurable processing array. By evolution, the quality
of the optimized image filter on a reconfigurable process-
ing array with a few faults is almost same as that on a re-
configurable processing array with no fault. Consequently
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Figure 5: The input images with noise.

Figure 6: The output images by the evolved filter of Fig. 4.
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Table 3: Results on a reconfigurable processing array with different faults.

Item CLBs Best one Average Worst one
Available Used MDPP Ratio SD P b Cb P w Cw Used MDPP Ratio Time Used MDPP Ratio

Faults(0) 21 8 1.722 1.000 71 645 1064 372 593 6.6 2.365 1.000 405.2 8 2.442 1.000
Faults(2) 19 7 1.742 1.012 88 695 1150 263 419 5.7 2.390 1.011 411.5 7 2.537 1.039
Faults(4) 17 12 1.939 1.126 85 1070 1774 393 625 5.6 2.955 1.249 416.7 5 3.453 1.414
Faults(6) 15 6 2.008 1.166 50 550 910 227 362 5.4 2.965 1.254 425.2 4 3.525 1.443
Faults(8) 13 3 3.117 1.810 48 435 720 198 316 4.8 3.624 1.533 432.0 2 3.889 1.593

Available: In a 6*4 CLBs array, only one CLB is used in the last column, so the max number of available CLBs is 21.
Faults(x): A reconfigurable processing array with x faulty CLBs at random position, x = 0, 2, 4, 6, 8.
Used: the number of the used CLBs.
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Figure 4: The optimized image filter of Fault(2).

our proposed design method is effective for fault-tolerant
optimization.

We will also apply PSO to autonomous design circuits
for more complex functional requirements, and enhance
more practical information about circuit to fitness function.
Future works are to find better genetic encoding method to
apply PSO to large sized circuits, and to improve PSO to
reduce the processing time.
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