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Abstract

This paper proposes a new variation method for the phase functions of the adiabatic quantum
algorithm, quadric variation method. Experiments are carried out solving 3-SAT problem with
discrete adiabatic quantum algorithm to compare the proposed two formulation of quadric variation
method performance with the previously proposed methods linear and cubic.
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I. I NTRODUCTION

The field of quantum computation have gone through an
amazing development in past decade, it has rise as one of
the hot area of research after existence of many quantum
algorithms showing that the quantum algorithms greatly
enhance the efficiency of solving problems believed to be in-
tractable on classical computers. as Peter Shor’s polynomial
time quantum algorithm for factorizing integers [1], Grover
algorithm for unstructured search with quadric speed up over
any classical algorithm [2] and Hogg algorithm [3].

The Model of adiabatic quantum computation is a new
paradigm for designing quantum algorithms proposed by
Farhi et al.[4]. The Adiabatic model is based on quantum
adiabatic theorem, where the quantum computer evolves the
quantum system slowly to switch gradually from an initial
Hamiltonian with ground state easy to construct, to a final
Hamiltonian whose ground state encodes the solution of the
problem being solved.

In recently published articles, the Adiabatic quantum al-
gorithm, was shown to give polynomial average cost growth
for some NP combinatorial search problems as Satisfiability
problems [5], and set partitioning problem [6].

This paper compares the adiabatic algorithm performance
in solving 3-SAT problems using three different variation
methods Linear,cubic, and the proposed method, as result
the corresponding search costs and probability of finding
the solution are shown.

II. k-SAT PROBLEMS

The k-satisfiability problem (k-SAT) is a combinatorial
search problem, whose instance is a Boolean expression
written using AND, OR, NOT,n variables, andm clauses. A
clause is a logical OR ofk variables, each of which may be
negated. Given an expression, the solution is an assignment
,i.e., a value of TRUE or FALSE values for each variable
that will make the entire expression true,i.e., satisfying all
the clauses [7]. An example 2-SAT instance with 3 variables
and 2 clauses is(v1OR(NOTv2)) AND (v2 OR v3), which
has 4 solutions, for example,v1 = v2 = false andv3 = true.
For a given instance,the costc(s) of an assignments is the
number of clauses it does not satisfy. Fork ≥ 3, k-SAT is
NP-complete, i.e., among the most difficult NP problems in
the worst case [8].

III. T HE QUANTUM ADIABATIC THEOREM

The adiabatic theorem states that, if the Hamiltonian of
any quantum systemH(t) varies slowly enough, the state of
the system will stay close to the instantaneous ground state
of the Hamiltonian at each timet [3]. Assume we can build a
HamiltonianH(c) with ground state encodes the solution of
the problem instance to be solved, and prepare the system in
the known ground state of another HamiltonianH(0). Then
the adiabatic algorithm can continuously evolve the state of
the quantum computer using

H(f) = (1− f)H(0) + fH(c) (1)
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Table I
THE PARAMETERS USED IN DISCRETE AND CONTINUOUS VARIATION METHODS.

Parameters Variation methods
phase functions

Linear Quadric1 Quadric2 Cubic
∆ 1/

√
j const(=1) const(=1) const(=1)

Phaseshift function ρ(f) = f ρ(f) = f2 ρ(f) = 2f − f2 ρ(f) = 1.921f − 2.665f2 + 1.782f3

PhasesMix function τ(f) = 1 − f τ(f) = 1 − ρ(f) τ(f) = 1 − ρ(f) τ(f) = 1 − ρ(f)

with f rangingfrom 0 to 1 [3]. Under suitable conditions,
i.e., with a nonzero gap between relevant eigenvalues of
H(f), and with sufficiently slow changes inf , the adiabatic
theorem guarantees that the evolution maps the ground state
of H(0) into the ground state ofH(c), so a subsequent
measurement gives a solution.

IV. T HE DISCRETEADIABATIC ALGORITHM

In this paper, we use the algorithmically equivalent dis-
crete formulation of the adiabatic algorithm acting on the
amplitude state vector initially in the ground state of the
HamiltonianH(0), which can be represented as|ψ(0)

s ⟩ =
1√
N

[1, 1, ..., 1]T . Consider a discreet HamiltonianH(f) of
the general form

H(f) = �(f)H(0) + �(f)H(c) (2)

where �(f) and �(f) are phase mixing and phase shift
function, respectively. both of them are arbitrary functions
of f where (0≤ f ≤ 1), see Table.1, subject to the boundary
conditions

�(0) = 1, �(0) = 0 (3)

�(1) = 0, �(1) = 1 (4)

Although, the two functions�(f), and�(f) are not neces-
sary to be monotonic (i.e. obey the constraint�(f)+�(f) =
1), we consider only the monotonic functions [?].

In matrix form [3], the HamiltonianH(c) is a diagonal
matrix

H(c)
r,s = c(s)δr,s,where δr,s =

{
1 if r=s
0 otherwise

(5)

This Hamiltonian introduces a phase shift factor in the
amplitude of assignments depending on its associated cost
c(s), where the higher cost results in more phase shift.
The HamiltonianH(0) can be implemented with elementary
quantum gates by use of the Walsh-Hadamard transform
with elementsWr.s = 2�n/2(−1)r.s [3], where H(0) =
WDW andD is a diagonal matrix with the value for state
r given by the sum of the bits, i.e, the elementDr,r is just
a count for the number of bits equal to 1 in stater.

A single trial of the algorithm consists ofj steps, param-
eter∆ and can be described as

1) Initialize the amplitude state vector to the ground state
of H(0) giving equal values for all states as|ψ(0)

s ⟩ =
1√
N

[1, 1, ..., 1]T

2) For Stepsh = 1 throughj repeat the matrix multipli-
cation :

|ψ(h)⟩ = Uh(f)|ψ(h�1)⟩ (6)

where |ψ(h�1)⟩ is the amplitude state vector at step
h − 1, andUh(f) is unitary evolution operator forh
th step which can be represented as

Uh(f) = e�iτ(f)H(0)∆/2 ·e�i�(f)H(c)∆ ·e�iτ(f)H(0)∆/2

(7)
3) Measure the final system After thej steps take place,

the probability to find a solution is given byPsoln =∑
s ||ψ(j)||2 with the sum over all solutionss.

As a choice for the evolution,f is chosen to vary linearly
from 0 to 1. Specifically, we takef = h/(j+ 1) for steph,
whereh is ranging from 1 toj.

V. EXPERIMENTS AND CONSIDERATIONS

A. Variation Methods and parameter∆
Recently several variation methods for phase shift func-

tion �(f), and phase mixing function�(f) were presented
as an attempts to decrease the overall search cost [3]. In
this paper we present monotonic (means�+�=1) version
of quadric variation method in two formula of quadric
polynomial inf . Table .1. summaries this methods , linear
, cubic and the two quadric formula we presents, and also
it shows the values of the parameter∆ as used with each
method.

Figures 1, 2, 3, amd 4 shows the phase fuctions for each
variation methoudvs. thef value from 0 to 1, foucasing in
the figures we can note that the quadric variation methoud
shown in fig. 3, has smalle diversity area than the others
whcih gives a sign for expecting better results. A good
performance of the discrete adiabatic algorithm requires
an appropriate choice of parameter∆. The experiments
have shown that the performance of the algorithm remains
good for moderate value ofj provided that∆ is below
some threshold value. The experiments for solving 3-SAT
problems withn ≤ 20 has shown this threshold to be
somewhat near 1.

B. Search behavior

In this section we compare the search behavior of the
discrete adiabatic algorithm using the variation methods as
summarized in Table.1. First is the linear variation method
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Figure1. Phase shift and phase mix functionsV s f for the linear variation
method.
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Figure 2. Phase shift and phase mix functionsV s f for the quadric
variation method withρ = f2 formula.

corresponds to the continuous adiabatic algorithm, this
method uses∆ = 1/

√
j, phase shift�(f) and phase mixing

�(f) functions varies monotonically as linear function off ,
and number of stepsj grows as cubic number of bitsn3.
Second method is the cubic variation [?] with �(f) and�(f)
varies monotonically as cubic polynomial inf , constant∆,
and usesj grows as square number of bitsn2, and finally
the quadric variation method with two formula�(f) = f2

and�(f) = 2f − f2.
Figures 5, and 6 compare the search behavior of the

algorithm in solving 3-SAT problem withn = 8, and16,
respectively. The figures show that the quadric variation
method with number of stepsj only as2 ∗ n can achieve
Psoln near0.5 , which shows faster search behavior when
it is compared with the algorithm behavior using cubic
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Figure 3. Phase shift and phase mix functionsV s f for the quadric
variation method withρ = 2f − f2 formula.
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Figure4. Phase shift and phase mix functionsV s f for the Cubic variation
method.

variation with number of steps at leastn2 and the linear
variation with j = n3.

C. Search cost

The search cost is defined to be the expected number
of steps required to find a solutionC = j/Psoln. Fig. 7
compares the average search costC for the Linear, cubic,
and the two formulation of quadric variation methods for the
adiabatic algorithm. it shows that using quadric variation
with just enough number of stepsj = 2 ∗ n to achieve
moderatePsoln as shown in Figures. 5, and 6, reduces the
search cost below the other methods. However the algorithm
with linear variation could achievePsoln near 1 in most of
the trials as shown, the number of steps requiredj grows as
n3 giving a large search costs, far higher than those of other
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Figure 5. Psoln vs number of stepsh for the 3 methods averaged over
10 random instances of 3-SAT problems withn = 8
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Figure 6. Psoln vs number of stepsh for the 3 methods averaged over
10 random instances of 3-SAT problems withn = 16

method. For comparison the figure shows that the median
search cost atn = 16 for the quadric1, quadric2, cubic,
and linear methods to be 58.07, 56.22, 424.29 and 8749,
respectively. which shows improve in the resulting cost
reduction using quadric variation method, due to reduced
number of steps .

VI. CONCLUSIONS

The quantum adiabatic algorithm is a remarkable discov-
ery because it offers new insights into the usefulness of
quantum resources for computational tasks. In this paper,
we have presented an experimental study in solving 3-
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Figure7. Log plot of the average search costvs the number of variables
n using the same instances in Figures 5 and 6.

SAT problems with the discrete the adiabatic algorithm,
using a new monotonic variation method for the phase shift
and phase mixing function , quadric variation with two
different formula. The experiments have revealed that using
the quadric variation method improves on other variation
methods, in resulting Search cost and search behavior.
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