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Abstract: From the artificial life perspective, language can be viewed as a complex adaptive system emerging from
linguistic interactions between individuals. Language and the human brain have evolved in parallel and interacting
with each other. In this study, we propose a model of language evolution based on biological evolution and learning. In
our model, the linguistic space is expressed in the polar coordinate system in which each possible language is expressed
as a point. We conduct evolutionary experiments based on the model and visualize the results in the linguistic space.
The trajectory of distribution of innate linguistic abilities shows the diversification and complexity growth of language.
In the extended experiment, in which the angular coordinate represents the additional effect on cost for the plasticity,
we observe a general tendency that the cost of plasticity evolves to become smaller. However, it never evolves to be
zero, which might suggest that some cost of plasticity producing the Baldwin effect is adaptive in language evolution.
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1 Introduction

Language distinguishes humans from other animals.
Language allows us to accumulate knowledge and transmit
it across both space and time. This has led to a greater un-
derstanding of the world and accelerated cultural achieve-
ment. The evolution of language has been the subject of
numerous debates and speculations. Nevertheless, it is dif-
ficult to study in a scientific manner and remains an open
research question.

Recently, a constructive approach has been adopted to
investigate language evolution [1]. It is characterized by
the use of computational models from the viewpoint that
language is a complex adaptive system emerging from lin-
guistic interactions between individuals. Another view-
point states that language and the human brain have
evolved in parallel and interacting each other. In other
words, they have coevolved. If we focus on the evolu-
tion of the human brain, there are two typical adaptive
processes at different time scales: biological evolution and
learning (phenotypic plasticity) [2].

Based on these viewpoints, in previous work [3], we in-
vestigated the coevolution between communication ability
and phenotypic plasticity to clarify whether and how lean-
ing can facilitate evolution in dynamic environments aris-
ing from communicative interactions among individuals.
To do this, a simple computational model was devised to
do this. The levels of adaptive communication of signaling
and receiving processes are determined by different sets of
traits. Each level represents the expected value of fitness
contribution for a successful communication. A communi-
cation is successful only when the levels of the signaler and
the receiver are the same. The agents try to improve their
communication levels through learning in which the val-
ues of plastic traits can be modified from their genetically
determined values. The evolutionary experiments showed
that the population with a learning ability successfully in-
creased its shared level of communication while the popu-

lation with no leaning was not able to increase the level.
It was also shown that the Baldwin effect (typically inter-
preted as a two-step evolution of the genetic acquisition
of a learned trait without the Lamarckian mechanism [4])
repeatedly occurred and facilitated the evolution.

The purpose of this research is to study the general roles
of biological evolution and learning in the evolution of lan-
guage. For this purpose, we construct a generalized model
for the coevolution between the communication ability and
phenotypic plasticity. It is a generalization over the model
devised in the previous work [3] in the following two as-
pects. 1) The linguistic space is expressed in the polar
coordinate system in which each possible language is ex-
pressed as a point, and the success in the conversation is
determined geometrically (instead of using a specific task
as in the previous work). Therefore, we can observe the
coevolution as trajectories of innate linguistic abilities of
agents in the linguistic space. 2) The fitness can be defined
by adjusting the benefit from the communicating agents,
the benefit from the complexity of the used language, and
the cost of learning, independently.

2 Model

2.1 Agent and communication

N agents in the population communicate with each
other using their language capacity. The linguistic space
is expressed in the polar coordinate system in which each
possible language is expressed as a point (Figure 1). The
distance from the origin (r) represents the complexity of
the language, and the angle from the positive x-axis (θ)
represents a language type. Each agent is represented as
a point and a field surrounding the point in the linguistic
space. The former corresponds to the agent’s innate lan-
guage, and the latter corresponds to linguistic plasticity
as an innate attribute of the agent. The plasticity is ex-
pressed as a fan-shaped field with area determined by rp
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Figure 1: Linguistic space and agents.

and θp as shown in Figure 1.
Overlap of two plasticity fields means that correspond-

ing two agents can communicate with each other by learn-
ing (using their plasticity). Agents with large plasticity
can communicate with many agents although they incur a
large cost proportional to the area of their plasticity field.
The polar coordinate system reflects the situation where
the difficulty and cost of communication is proportional
to the complexity of the language.

2.2 Fitness Evaluation

The fitness of each agent depends on the number of
communicating agents, the complexity of the innate lan-
guage, and the area of the linguistic plasticity. The fitness
function is defined as:

Fitness = (L� � L
2

2G
)w1
� rw2

� (4θprpr)w3
, (1)

where wi (i=1, 2 and 3) are weights for three compo-
nents of the fitness function. The first term represents the
benefit from the number of communicating agents. L is
number of communicating agents and G is the population
size. � is a parameter that determines the change in the
benefit of communications with the increase in the num-
ber of communicating agents. There are three possible
situations: a) a linear increase (�=0), b) an exponential
increase (� < 0), c) the existence of an optimal number
of communicating agents for the best benefit (� > 0),
as shown in Figure 2. Case b) corresponds to the situ-
ation in which there is a synergetic effect in information
sharing, and c) corresponds to the situation in which the
benefit of the information decreases if it is shared by too
many agents due to some restrictions (e.g., the limitation
of resources). The second term represents the benefit of
communications depending of the complexity of the lan-
guage. The more complexity will bring about the greater
benefits. The third term represents the cost of learning.
We assume that it is proportional to the area of plasticity
(4θprpr), as it is probable that more complex and different
languages are difficult be learned.

2.3 Evolution

The agents are selected using roulette wheel selection
to reproduce according to their fitness to form the next
generation. Mutation is performed with probability Pm.
The genotypes of offspring are mutated by adding a small
random value: R(0, 12) for rp, r, and 5/r�R(0, 1) for θ,
θp, where R(�, �2) is a normal random number with mean
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Figure 2: The effect of � on the benefit.

(a) � = 20 (b) � = �20

Figure 3: Results of language evolution.

� and variation �2. Note that the range of a random
value for θ, θp is inversely proportional to r of the parent.
This property keeps the amount of displacement of the
innate language or change in its plasticity due to mutation
constant independent of the location of the agent in the
linguistic space.

3 Results

We conducted evolutionary experiments for 1000 gen-
erations and visualized the results in the linguistic space.
The following parameters were used: N=25000, w1=1,
w2=1, w3=1.1, Pm=0.8. The initial values of the geno-
types of the agents (r, rp, θ, θp) were all zero.

3.1 Evolution of linguistic diversity and
complexity

We conducted two experiments in which � was 20 or
�20. The results using the two-dimensional polar coordi-
nate system are shown in Figure 3. The innate linguistic
abilities of all agents were plotted with a unique color for
every 10 generations. Figure 3(a) and (b) show the trajec-
tory in the case of �=20 and �20 respectively. Both fig-
ures indicate that the agents formed some linguistic clus-
ters from the initial population at the origin, then they
increased their complexity of language gradually. How-
ever, the clusters converged to one large cluster with high
complexity by the end of experiments. It is notable that
distant clusters coexisted for a longer generation when �
was positive (Fig 3(a) vs. (b)). This means that the nega-
tive effect of information sharing on the fitness caused by
the excess number of communicating agents contributed
to the maintenance of high linguistic diversity.
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(a) The average complexity of
language.

(b) The average number of
communicating agents. (c) The average plasticity of agents.

Figure 4: The comparison of agent abilities between experiments with �=20 and �=-20.

Figure 4 compares some properties of agents in both
� cases. Figure 4 (a) shows the evolution of the average
innate complexity of language. The horizontal axis repre-
sents the generation. We see that the average complexity
in the case with �=20 was higher than the one in the case
with �=20 after around the 550th generation. This im-
plies that the negative effect of information sharing could
also accelerate the later evolution of the complexity of lan-
guage.

Figure 4(b) and (c) shows the evolution of (b) the aver-
age number of communicating agents and (c) the average
plasticity for each agent respectively. We define the plas-
ticity of each agent as its area (4 � θp � rp � r). Figure 4(b)
showed a sharp increase in the number of communicat-
ing agents for about 20 generations and its subsequent
decrease to the small value (about 1250) in the case of
�=20. In contrast, the number of communication in the
case of �=-20 sharply increased to its maximum 25,000
(equal to the population size). Figure 4(c) shows that the
sufficient amount of plasticity increased drastically from
the initial generation in the case of �=�20. In the case of
�=20, the plasticity evolved to the relatively smaller value
12694 at 1000th generation, although it is too small to see
its value in Figure 4(c). This indicates that agents in the
case of �=20 formed linguistic clusters that keep the most
beneficial size (about 1250) by controlling their plasticity.
Note that, although Figure 3(a) shows that the linguistic
clusters seem to have converged to one cluster in the last
generation, that cluster is composed of small sub-clusters
that kept the most beneficial size. Furthermore, the lin-
guistic clusters that were close to each other were more
robust against a mutation of θ. This is an explanation
of why the linguistic clusters converged to one cluster in
spite of �=20.

As a whole, the results indicate that the evolutionary
scenario of linguistic diversity as follows. 1) In the early
stages of evolution, there was an increase in the number of
agents with more plasticity to communicate each other. 2)
Then, in the case of �=20 (means there is negative effect
of information sharing), the plasticity is adjusted to small
value to keep population size in optimal value.

In addition, we conducted experiments without learning
in which agents have no plasticity. Specifically, a commu-
nication between two agents results in success when they
share the same r and θ perfectly. The results with �=20
are shown in Figure 5. We see that the complexity of lan-
guage rapidly converged to about 6.5 in early generations.

(a)Trajectory of evolution.
(b)Complexity of language.

Figure 5: Results of experiments without learning.

It shows that the evolutionary process of the complexity
of language tended to constant without learning.

3.2 Effects of learning cost

We conducted further experiments to understand the
effects of the leaning cost on the evolution of the pop-
ulation. We used various weights for learning cost (w3)
ranging from 0 to 2 at intervals of 0.05. Here we focused
on the case of �=20. Figure 6 shows four typical tra-
jectories of the population when w3= 0, 1.2, 1.4 and 1.6
respectively. It shows that as the weight of learning cost
increased, the increasing rate of the linguistic complexity
decreased, and the linguistic clusters tended to converge
around the origin.

The average plasticity and complexity of language in
the last generation in these cases are shown in Figure 7.

When the weight was relatively small (w3 < 1.0), the
complexity of language reached a high value around 4800.
The plasticity value has a wide distribution between low
value and significant high value comparatively. In these
cases, the increase in the complexity of language brings
about the higher benefit compared with its effect on the
cost. Thus, the higher complexity of language was essen-
tial for survival of agents. Besides, due to the smaller cost
of learning, the plasticity often became high value. As a
result, the language tended to become more complex and
the plasticity often reached high values.

When 1.0 ≤ w3 < 1.4, both indices tended to be-
come smaller as w3 increased due to the increased cost
of learning. There is a possibility that the smaller plas-
ticity retarded the evolution of the complexity because
agents might not be able to communicate with their own
mutants or not be able to keep the optimal number of
communicating agents.

When w3 ≥ 1.4, the complexity converged to the small
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Figure 6: Results of experiments for learning cost.

(a) The average plasticity
of agents.

(b) The average complexity
of agents.

Figure 7: The results comparison of learning cost.

value around 200 as w3 increased. In these conditions, the
increase in the complexity of language yields much larger
cost. Thus, the population was supposed to evolve to use
the less complex languages. The gradual increase in the
average plasticity when w3 ≥ 1.4 was due to the slower
convergence to the small values caused by the higher cost.

As a whole, it turned out that the degree of learning
cost strongly affected the diversification of languages and
their properties.

3.3 Additional cost experiments

Finally, we conducted experiments to consider the evo-
lution of learning cost. In these experiments, the angular
coordinate of an agent θ was associated with an additional
cost of learning Cost, which was added to the fitness value
calculated as follows:

Cost =


�(|π2 � θ| �

2(4θprpr)w3

π ) if 0 < θ ≤ π/2,

(|π2 � θ| �
2(4θprpr)w3

π ) if π/2 < θ ≤ π,

(|π2 � θ| �
2(4θprpr)w3

π ) if π < θ ≤ 3π/2,

�(|π2 � θ| �
2(4θprpr)w3

π ) otherwise.

When θ is 0 or 2π, there is no effect of the additional cost.
As θ gets closer to π, the additional cost increases. We
used 20 as �.

The typical results are shown in Figure 8. Each figure
shows the result of a trial with a different random seed.
They illustrate that linguistic diversification occurred in
the first or the fourth quadrant due to the higher cost

Figure 8: Results of extended experiments.

in the second and third quadrant. Thus, the language
that had low cost to learn was selected in the evolution of
language. The results show that excessive cost of learning
prevents evolution of language.

4 Conclusion

In this paper, we conducted experiments with a compre-
hensive model of language evolution. The results of our
experiments showed some implications for language evo-
lution as follows. First, the linguistic complexity and di-
versity can emerge through interactions between evolution
and learning. Second, the negative effect of information
sharing on the fitness caused by the excess number of com-
municating agents contributed to the maintenance of high
linguistic diversity. Third, agents may not be able to ad-
vance their linguistic complexity without the plasticity of
linguistic abilities. Finally, the excessive cost of learning
can prevent evolution of language because the plasticity
is not enough to cover the mutation range. It is not nec-
essarily the case that the low cost of leaning accelerate
evolution of language due to the plasticity covering the
whole mutation range.

Future work includes considering geographical factors
in linguistic diversification and the asymmetric aspects of
benefit of communications by extending our model.
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