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Abstract: Passive localization in the sensor network has been studied in many areas. Especially, the estimation of the position and 
heading for the target is an important subject in the navigation problems. We estimate the position and the heading information only 
with range difference of arrival measurements. The proposed algorithms are based on the pseudo linear measurement equation 
transformed from the nonlinear one and uses the instrumental variable method to remove estimation errors. It does not need 
additional computational burden so that it will be advantageous to real time applications. To show the usefulness of the proposition, 
we simulate it in the various positions and headings comparing with a nominal least squares method and the robust least squares 
method. 
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I. INTRODUCTION 

Passive localization in sensor network has been 
studied in many areas such as control, communication, 
signal processing and etc. For the localization, the 
utilized measurements of sensor network are such as 
TOA (time of arrival), TDOA (time difference of 
arrival), RDOA (range difference of arrival), or RSS 
(received signal strength). TDOA or RDOA-based 
localization methodologies have been applied for 
finding target’s position because it does not need 
synchronization between the target and the network. 
Additionally, if one can get two different positions 
concerned on-board of the target, heading estimation is 
possible. This method has been used in a navigation 
problem [1]. In this paper, we are focusing on the 
heading and position estimation with RDOA 
measurements.  
In a plane, the localization problem with RDOA 

measurements is regarded as an MLE (maximum 
likelihood estimation) problem which decides a crossing 
point between two parabolic functions [2]. However, 
there is always a possibility that the MLE method is not 
converged to the global minimum but converged to a 
local minimum depending on the initial point. 
Additionally, its solution is often derived with 
numerical analysis methods which can be a burden for 
computation. 
To convert nonlinear estimation problem to linear one, 

an intermediate variable method has been proposed with 
adding a new state variable [3]. This transformed linear 
equation is called as a pseudo linear equation. With this 
equation, it can be relaxed for the initial guess problem. 
However, there are still two problems for the linear 
equation. The one is that there is an uncertainty in the 

measurement matrix which causes an estimation error 
by correlation with itself or with measurement noise [5-
7]. The other problem is a bias of the measurement 
noise. These problems are concerned with the RDOA 
measurement noise and they may be neglected under the 
assumption that the variance of the noise is small [2-5]. 
However, if the condition of SNR is not good, the 
estimation error can be increased rapidly.  
The IV (instrument variable) method can be a proper 

solution, because the method uses an instrumental 
variable in the measurement matrix for fleeing from the 
correlation [8]. It does not require additional 
computational burden so that it will be advantageous to 
real time applications. 
Therefore, we propose the position and heading 

estimators based on the IV method and assume the 
stochastic information is unknown. To treat the bias of 
measurement noise of the pseudo linear equation, we 
estimate the bias by augmenting to the state variables 
based on the bias common model [9]. The useful aspects 
of the proposition are shown by simulation in the 
various positions and headings and by comparison with 
a nominal least squares method and the robust least 
squares method in [6] which can be adapted to this 
linear uncertain problem. 

 

II. POSITION AND HEADING ESTIMATION 

MODEL WITH RDOA MEASUREMENTS 

1. Position Estimation Model 
We assume the target has two transmitters. The 

transmitters generate some signals which the sensor 
nodes of a network can realize the target. The network 
does not know the burst time of the signal but it can 
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measure the arrival time. In this case, one can use a time 
difference to localize the target’s position and the time 
difference can be transformed to the RDOA by 
multiplying a propagation velocity.  

1,2 1 2( )pr v t t    (1) 

where pv  is the propagation velocity, 1t  and 2t are 

arrival time at each sensor node, and 1,2r  is the RDOA.  

To make this problem simple, we derive it in the 2-D 
case as Fig. 1.  
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Fig. 1. Positions of the sensor nodes and the target  
in the 2-D plane 

 
By using the intermediate variable method [4], the 
measurement model is given by 
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, and 1,2
Ar  is the RDOA measurement noise and its 

stochastic property is a white and zero mean. The 
measurement noise of (2), 1

Av can be assumed to be a 

white noise but it cannot be assumed zero mean. 
2

1 1( )A AE v       (4) 

where 2
1( )A  is the variance of the RDOA 

measurement noise, 1,2
Ar . In a low SNR condition, this 

factor can cause an estimation error, so that it needs to 
be removed from the measurements 1

Ay or to be 

estimated by setting it as a new state variable.  
For the other transmitter, B, the measurement equation 

can be derived likewise.  

2. Position and Heading Estimation Model 
The intermediate variable method makes the nonlinear 

localization problem to the linear problem so that a 

linear estimator can be applied to find the transmitters’ 
positions. If one can obtain two positions for the target, 
its center position and heading can be derived by using 
the positions. The center position is  
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By using this idea, we can build a linear model for the 
position and heading. Using (5) and (6), the linear 
equation is given by 
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, and its generalized form when there are n+1 sensors is 
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III. LINEAR ESTIMATION METHODS FOR 

POSITION AND HEADING 

1. Instrumental Variable Algorithm 
The stochastic compensation solution, the RoLS 

(robust least squares) in [6] is an useful method because 
its formulation resembles with the general least squares 
method and computational burden is low. However, if 
the sensor network has a characteristic of stochastic 
information being varying, the estimation results may 
be incorrect. To overcome this problem when the 
stochastic properties are unknown, the IV method can 
be an alternative solution. The IV method uses 
instrument variable for avoiding the correlations which 
are between the measurement matrix uncertainties, 
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( , )cor    or between the measurement matrix 

uncertainties and the measurement noise, 
( , )cor n [8]. This method is unlike the RoLS 

algorithm which removes the correlations by using the 
scale-factor error compensation term,W and the biased 
error compensation term, V  but flees from the 
correlations by replacing the measurement matrix with 
an IV matrix. The IV matrix can be built simply with 
one-step delayed measurement matrix because we 
assume the measurement noise is white. 

 
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2 2

2 1

( 1), ( ) 0
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Therefore, the position and heading estimator with the 
IV algorithm is  

   1
1 1ˆ ( ) ( ) ( )IV k T k k T kX k z

        (11) 

However, an error still exists in the estimation result 
by the measurement noise bias in (4). Because we 
assumed the stochastic properties of the RDOA 
measurement are not available, the bias which is the 
variance of the RDOA noise cannot be removed from 
the measurements. If the sensor network is able to 
assume that the RDOA noise variances are identical for 
all measurements as the bias common model in [9], it is 
possible to estimate the common bias. To estimate the 
bias, we set the bias as a new state variable and derive 
the measurement equation as follows: 
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where I  is a 2(n-1) dimensional vector which is  
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T
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and ( )n k is the zero mean and white noise which 

eliminates the bias from n in (8). With (12), the 
augmented position and heading estimator is 
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Theorem 1. (Convergence to true position and heading 

of the proposed algorithm) If there are enough sensors 
to observe the position, heading and the biases, and the 
noises of sensor network are i.i.d. (independent and 
identically distributed), then the estimation results of the 
proposed method converge to true position and heading 
in probability. 
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□ 
Proof: 
Since the measurement noises are i.i.d., the auto-

correlation of the measurement matrix uncertainties and 
the cross-correlation between the measurement matrix 
uncertainties and the measurement are derived as 
follows: 
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Therefore, each correlation can be rewritten as 
convergence in probability. 
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With these convergences, (18) and (19), the estimation 
result, (14) is also able to converge to true position and 
heading by Slutsky’s theorem [8]. 
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IV. SIMULATION RESULTS 

To show the performances of the position and heading 
estimators, we compare them with the nominal least 
squares method through simulations. The sensor 
network contains 6 fixed sensor nodes at (0, 0), (-1.015, 
0), (-1.015, 1.015), (-1.015, 2.03), (0, 2.03), and (0, 
1.015) [ ]m . The variances of the RDOA measurements 

are all set to 0.02 2[ ]m . For batch type comparison, we 

accumulate 5000 measurements and calculate the error 
performance by using 100 iterations. In this simulation, 
we fix the transmitter A and rotate the transmitter B 
every 10 degree to check the estimation performances at 
different target’s center position and heading. 
 The mean error (ME) for the position is shown in Fig. 
2 and its RMSE is shown in Fig. 3. As referred in [6], 
the NLS (nominal least squares) method has a large 
estimation error by the measurement matrix uncertainty 
and the bias of the measurement noise. On the contrary, 
the RoLS, IV and augmented IV methods have low 
estimation error within 0.02[ ]m . The bias of the IV 

method caused by non-zero mean of the measurements 
noise is not relatively serious. However, the augmented 
IV method compensates properly the error by estimating 
it.  

The estimation results for the heading are shown in 
Fig. 4 and Fig. 5. The trend of heading results of the 
NLS resembles with the position results. The heading 
error from the cosine is bigger than the one from the 
sine like the position error. The reason for this is that the 
heading from the cosine depends on the x-position of 
the target and the other is vice versa as shown in (6). 
The heading estimation by the augmented IV method 
also shows good performance as the RoLS estimator. 
Therefore, the augmented IV method can be a practical 
method because it does not need any stochastic 
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information and additional computational burden.  
 

V. CONCLUSION 

The target’s position and heading can be estimated in 
the RDOA measured sensor network with linear 
estimator. However, since a nominal least squares 
estimator causes estimation error by the measurement 
matrix uncertainty and the bias of the measurement 
noise, there needs a proper compensation algorithm. We 
propose the position and heading estimator and it does 
not need an additional compensation procedure and the 
stochastic information of the RDOA measurement noise. 
The proposition is based on the instrumental variable 
method and estimates the bias of the measurement noise 
under the bias common model assumption. The 
estimator works well in noisy environment like the 
robust least squares method and shows better 
performance than the nominal least squares estimator. 
The useful aspects that it has low computational burden 
and does not need any stochastic information make it 
utilized for the practical applications. 
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Fig. 2. Mean error for the target’s center position 
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Fig. 3. RMSE for the target’s center position 
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Fig. 4. Mean error for the target’s heading 
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Fig. 5. RMSE for the target’s heading 
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