
Three-dimensional Morphogenesis by Cell Division and Death in
Viscoelastic Amorphous Computing

 Eisuke Arai, Fumiaki Tanaka and Masami Hagiya

Department of Computer Science, Graduate School of Information Science and Technology, University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, JAPAN.

 (Tel : +81-3-5841-4093)
(arai917@is.s.u-tokyo.ac.jp)

Abstract: Amorphous computing is a computational paradigm for realizing global computation as a result of local
communication among identical computational particles which are irregularly distributed over space. Each
computational particle has a small computing power and a small amount of memory, and executes an identical program
with no synchronization. In the original model of amorphous computing, particles did not have motility resulting from
physical interactions and could not form any significant structures by their self-organization in three-dimensional space.
In this paper, we propose a new approach to construct desired structures of programmable particles in three-dimension
by extending the original model of amorphous computing. In addition to general operations in the original model, we
introduce operations for generation and destruction of particles. Furthermore, we allow particles to have slight motility
by viscoelasticity, because we assume physical interactions among particles. So far, we have built a simulator to
observe behaviors of moving particles in three-dimensional space and control their morphogenetic process. In this
simulator, the particles execute an identical program which includes the operations for generation and destruction. We
have investigated and optimized parameters of the simulator so that the particles moderately cluster and form some
fixed structure.

Keywords: Amorphous computing, Morphogenesis, Viscoelasticity, Three-dimension.

I. INTRODUCTION

Models of amorphous computing consist of a

collection of small computational particles distributed

irregularly over space where each particle has a small

computing power and a small amount of memory. These

individual particles are entirely identical and not

synchronized. Each particle can communicate with a

few nearby neighbor particles. Although all particles are

programmed identically, each particle is distinguished

from other particles by its local state which includes the

list of neighbor particles, distance from each neighbor,

and local variables. The study of amorphous computing

was introduced by Abelson et al. in [1] and the

computational models based on the idea of amorphous

computing were summarized in [2]. Among the models,

that of programming amorphous medium was

established by Beal et al. [3]. Amorphous medium is the

continuous limit of models of amorphous computing in

which particles are infinitesimal and distributed densely

over space. Proto [4] is a Lisp-like programming

language which targets such amorphous medium. As an

example of programming amorphous medium, a sensor

network was implemented in Proto [5]. The advantage

of amorphous computing is its robustness compared

with other general computational paradigms because the

original model of amorphous computing was inspired

by biological systems [6]. Thus there has been

developed an application of amorphous computing in

which cells such as E coli are targeted [7]. Needless to

say, one of the goals of such applications is to construct

shapes and structures composed of particles, just as

biological systems realize morphogenesis.

In this paper, we present a new approach to three-

dimensional morphogenesis in a model of amorphous

computing. We give particles slight motility that

depends on interactions among them, and implement the

generation and destruction operations in addition to the

operations in the original model of amorphous

computing. Two-dimensional morphogenesis in a model

of amorphous computing was investigated in a

preliminary attempt [8]. Although a three-dimensional

approach to morphogenesis in amorphous computing

was also proposed [9], motility of particles was not

based on their physical interactions but due to

predefined background signals, and particles did not

execute an identical program. In our approach, we

assume that each particle executes an identical program

and moves automatically by viscoelastic force. The

viscoelasticity of particles is generated according to

distance from the neighbors and density of the

neighbors. We refer to smooth particle hydrodynamics

(SPH [10]) in order to simulate the viscoelastic

behaviors of particles and implement calculation of

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 625

viscoelastic force using a method established by Clavet

et al. [11]. We need to update neighbors of each particle

at every simulation step, because particles have motility

and change their positions. Thus we have implemented

efficient neighbor search strategy of particle-based

fluids [12].

II. THE MODEL

Our simulation model is based on the original

amorphous computing model. The originality of our

work is roughly divided into four important points. In

this section, we explain these points individually.

1. Motility of computational particles
We introduce motility of particles, because we

assume that particles are like biological organisms or

biomolecules. Thus it is natural that there are physical

interactions among particles such as viscosity and

elasticity. We use the well known method for particle-

based viscoelastic fluid simulation in order to add

viscoelastic force to particles. This force is assumed to

be produced by interactions among nearby particles and

affects them. For each particle, we need to calculate

force by all interactions with its neighbors at every

computation step. Although we introduce motility, we

do not add to particles the ability to move freely

because we only allow particle to be affected by

external force.

2. Implementation of particle operations
To execute programs written in the style of

amorphous computing in our model, it is necessary to

implement several basic operations and build them into

particles. We can execute complex programs by

systematically combining these operations. Concretely,

we implement the following operations.

A. Minimum and maximum operations

In the minimum operation, each particle obtains the

minimum of the specified values owned by all neighbor

particles by repetition of local communication. A

particle refers to the specified values of neighbors, finds

the minimal value of them and then stores this value

into itself in a single communication step. Similarly, the

maximum operation allows each particle to find the

maximal value of those owned by all neighbors.

B. Gradient operation

The gradient operation is a way for each particle to

know distance from a specified particle as the gradient

value. Each particle finds the local minimal value of

neighbor gradient values and the local maximal value of

ranges to its neighbors which ranges are known as a

priori information. Sum of these local values is stored as

new gradient value in single communication step of the

operation. By repetition of the local communication, all

particles know their distance values from the specified

particle.

C. Generation and destruction operations

Inspired by cell division and death, we implement

the generation and destruction operations which

increase and decrease particles, respectively. In the

generation operation, a particle reproduces itself with its

own state at an adjacent point. On the other hand, in the

destruction operation, a particle kills itself. In our model,

we do not consider the energy consumption with

reproduction of particles and the remains of particles in

the destruction operation.

3. Mechanism of our simulator
We built a simulator which executes the particle

operations just as we introduced above. After

initialization, the simulator repeats updating states of

particles and visualizing them. The single update

process executes the necessary tasks as follows. At first,

the simulator executes the neighbor search for all

particles, calculates viscoelastic force between all

particle pairs, and then moves all particles by the

calculated force. Next, the simulator executes the

neighbor search again because neighbor particles are

changed by their movement. Finally, each particle

communicates with its neighbors and updates its state

which includes some values related to the operations.

Only one communication step for one particle is

allowed in a single update. Thus, by repetition of the

update process, the value for each operation converges.

In our simulation, we use modestly converged values

for a cascade of operations.

4. Dynamic neighbor search in 3D space
In our system, it is necessary for each particle to

always know its neighbor particles so that it can contact

and interact with each other. Since we assume that

particles move by some operations, we have to

dynamically update neighbors at every computation step

of each operation. To search for neighbors, we need not

check all particles, but need to check only some

particles which are included in particular divisions of

space called cells. Each cell is a 3D grid with size of the

neighborhood radius of a particle. We divide space into

such cells and index them depending on coordinates of

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 626

their minimal corner. Furthermore we associate each

particle with its corresponding cell index. For searching

for neighbors of a particle, it is only necessary to check

particles inside 26 cells around the cell containing the

particle. In addition to this cell indexing approach, we

use also subdivision of the cell in order to further reduce

search space.

III. EXAMPLE

In this section, we demonstrate the process to form a

tubular structure as an example of our approach. We

explain an algorithm for modeling tubular structure and

then show simulation results of this example using our

simulator.

1. Algorithm for modeling tubular structure
We assume that there is one computational particle

at the initial condition. This particle begins the

generation (divide) operation and keeps on dividing

until the number of particles is sufficient to form any

structure. After the particles are clustered, one particle

on the surface of the cluster is selected as a source.

By searching for the particle which has the minimal

number of neighbors in all particles, we can find the

source on the surface. We then execute the gradient

operation from the source and choose the destination

particle which has the maximum gradient value, that is

to say, the farthest particle from the source. The

destination is also assumed to be on the surface of the

cluster. Figure.1 shows the state of choosing the source

and destination particles in the cluster.

Fig.1. Choosing specific particles
After both source and destination particles are found,

each particle starts the gradient operation towards the

destination to determine the specific particles lying

between the source and the destination. We call the line

of these particles “path”. For a particle on path, the sum

of its gradient values from the source and from the

destination is almost equal to distance between the

source and the destination. Neighbors of particles on the

path comprise a channel which connects the source and

the destination with slight width. In Figure.2, it is

shown how to make the path and channel in the cluster.

After determination of the particles in channel, each

particle in the channel executes the destruction

operation and disappears from the space.

Fig.2. Creating tubular structure

An important issue in this algorithm is that each

particle executes an identical program and

communicates with only its neighbors. Although each

particle has no a priori knowledge about other particles

except for its neighbors, it is distinguished from other

particles by its internal state such as the gradient value.

Therefore, we can control identically programmed

particles in order to model desired structures like this

example.

2. Simulation results
Using our simulator we could construct a cluster of

500 particles which is shown in Figure.3. There was

only one particle at the initial condition and then the the

number of particles started increasing by the generation

operation. To cluster particles as shown in Figure.3, we

investigated and optimized some parameters of the

simulator by trial and error. These parameters include

neighborhood radius, spring constant, density constant

and other values related to calculate viscoelastic force.

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 627

Fig.3. A cluster of 500 particles

After clustering particles and finding the source,

each particle executed the gradient operation from the

source and then could determine the destination particle

which had the maximum gradient value. Each particle

also could judge whether it was on the path and

furthermore in the channel. The particles in the channel

executed the destruction operation and disappeared. As

a result, we obtained a tubular structure like a bead (see

Figure.4).

Fig.4. A tubular structure

IV. CONCLUSION

In this paper we have presented a new approach for

constructing a specified structure from a cluster of

computational particles which are programmed to

execute an identical operations. To cluster the particles

we implemented the generation operation and gave

them slight motility based on viscoelasticity among

particles. As an example of our approach, we

demonstrated construction a tubular structure by each

particle’s executing an identical program. Although we

do not have actual implementation of such

programmable particles at present, we expect that we

can possibly use living cells for our research in future,

because a cell behaves according to its program, that is

DNA.

V. FUTURE WORKS

Our future work can be considered in several ways

as follows.

・We need to increase efficiency of each simulation

step because we want to enlarge the size parameters

of our model such as the simulation space and the

number of particles. To this end, we will attempt to

optimize the dynamic neighbor search and the

calculation process of local interactions.

・Although we currently assume a spherical cluster

of particles in our model, we need to consider a

cluster of any shape like a distorted one.

・In this paper, we demonstrated construction of a

tubular structure. We want to extend our study to

establish a new method for constructing arbitrarily

complex structures.

REFERENCES

[1] H. Abelson, D. Allen and D. Coore et al. (2000),
Amorphous computing. Communications of the ACM,
43:74-82
[2] H. Abelson, J. Beal and G.J. Sussman (2007),
Amorphous Computing. MIT Technical Report 2007-
030.
[3] J. Beal (2006), Amorphous Medium Language. MIT
Technical Report 2006-040.
[4] J. Beal and J. Bachrach (2006), Infrastructure for
engineered emergence in sensor/actuator networks.
IEEE Intelligent Systems:10-19
[5] J. Bachrach and J. Beal (2006), Programming a
Sensor Network as an Amorphous Medium. MIT
Technical Report 2006-069.
[6] J. Beal and G. Sussman (2005), Biologically-
Inspired Robust Spatial Programming. MIT Technical
Report AI Memo 2005-001.
[7] J. Beal and J. Bachrach (2008), Cells Are Plausible
Targets for High-Level Spatial Languages. Self-
Adaptive and Self-Organizing Systems Workshops,
2008: 284-291
[8] A.Kondacs (2003), Biologically-Inspired Self-
Assembly of Two-Dimensional Shapes Using Global-
to-Local Compilation. IJCAI'03 Proceedings of the 18th
international joint conference on Artificial intelligence.
[9] A. Bhattacharyya (2006), Morphogenesis as an
Amorphous Computation. Proceedings of the 3rd
conference on Computing frontiers:53-63

[10] J.J. Monaghan (1988), An introduction to SPH.
Computer Physics Communications 48(1):89-96
[11] S. Clavet, P. Beaudoin, and P, Poulin (2005),
Particle-based Viscoelastic Fluid Simulation.
Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer
animation:219-228
[12] J. Onderik and R. Durikovic (2008), Efficient
Neighbor Search for Particle-based Fluids. Journal of
Applied Mathematics, Statistics and Informatics (4):29-
43

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 628

