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Abstract: Amorphous computing is a computational paradigm for realizing global computation as a result of local 
communication among identical computational particles which are irregularly distributed over space. Each 
computational particle has a small computing power and a small amount of memory, and executes an identical program 
with no synchronization. In the original model of amorphous computing, particles did not have motility resulting from 
physical interactions and could not form any significant structures by their self-organization in three-dimensional space. 
In this paper, we propose a new approach to construct desired structures of programmable particles in three-dimension 
by extending the original model of amorphous computing. In addition to general operations in the original model, we 
introduce operations for generation and destruction of particles. Furthermore, we allow particles to have slight motility 
by viscoelasticity, because we assume physical interactions among particles. So far, we have built a simulator to 
observe behaviors of moving particles in three-dimensional space and control their morphogenetic process. In this 
simulator, the particles execute an identical program which includes the operations for generation and destruction. We 
have investigated and optimized parameters of the simulator so that the particles moderately cluster and form some 
fixed structure. 
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I. INTRODUCTION 

Models of amorphous computing consist of a 

collection of small computational particles distributed 

irregularly over space where each particle has a small 

computing power and a small amount of memory. These 

individual particles are entirely identical and not 

synchronized.  Each particle can communicate with a 

few nearby neighbor particles. Although all particles are 

programmed identically, each particle is distinguished 

from other particles by its local state which includes the 

list of neighbor particles, distance from each neighbor, 

and local variables. The study of amorphous computing 

was introduced by Abelson et al. in [1] and the 

computational models based on the idea of amorphous 

computing were summarized in [2]. Among the models, 

that of programming amorphous medium was 

established by Beal et al. [3]. Amorphous medium is the 

continuous limit of models of amorphous computing in 

which particles are infinitesimal and distributed densely 

over space. Proto [4] is a Lisp-like programming 

language which targets such amorphous medium. As an 

example of programming amorphous medium, a sensor 

network was implemented in Proto [5]. The advantage 

of amorphous computing is its robustness compared 

with other general computational paradigms because the 

original model of amorphous computing was inspired 

by biological systems [6]. Thus there has been 

developed an application of amorphous computing in 

which cells such as E coli are targeted [7]. Needless to 

say, one of the goals of such applications is to construct 

shapes and structures composed of particles, just as 

biological systems realize morphogenesis.  

In this paper, we present a new approach to three-

dimensional morphogenesis in a model of amorphous 

computing. We give particles slight motility that 

depends on interactions among them, and implement the 

generation and destruction operations in addition to the 

operations in the original model of amorphous 

computing. Two-dimensional morphogenesis in a model 

of amorphous computing was investigated in a 

preliminary attempt [8]. Although a three-dimensional 

approach to morphogenesis in amorphous computing 

was also proposed [9], motility of particles was not 

based on their physical interactions but due to 

predefined background signals, and particles did not 

execute an identical program. In our approach, we 

assume that each particle executes an identical program 

and moves automatically by viscoelastic force. The 

viscoelasticity of particles is generated according to 

distance from the neighbors and density of the 

neighbors. We refer to smooth particle hydrodynamics 

(SPH [10]) in order to simulate the viscoelastic 

behaviors of particles and implement calculation of 
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viscoelastic force using a method established by Clavet 

et al. [11]. We need to update neighbors of each particle 

at every simulation step, because particles have motility 

and change their positions. Thus we have implemented 

efficient neighbor search strategy of particle-based 

fluids [12]. 

 

II. THE MODEL 

Our simulation model is based on the original 

amorphous computing model. The originality of our 

work is roughly divided into four important points. In 

this section, we explain these points individually. 

1. Motility of computational particles 
We introduce motility of particles, because we 

assume that particles are like biological organisms or 

biomolecules. Thus it is natural that there are physical 

interactions among particles such as viscosity and 

elasticity. We use the well known method for particle-

based viscoelastic fluid simulation in order to add 

viscoelastic force to particles. This force is assumed to 

be produced by interactions among nearby particles and 

affects them. For each particle, we need to calculate 

force by all interactions with its neighbors at every 

computation step. Although we introduce motility, we 

do not add to particles the ability to move freely 

because we only allow particle to be affected by 

external force. 

2. Implementation of particle operations 
To execute programs written in the style of 

amorphous computing in our model, it is necessary to 

implement several basic operations and build them into 

particles. We can execute complex programs by 

systematically combining these operations. Concretely, 

we implement the following operations. 

A. Minimum and maximum operations 

In the minimum operation, each particle obtains the 

minimum of the specified values owned by all neighbor 

particles by repetition of local communication. A 

particle refers to the specified values of neighbors, finds 

the minimal value of them and then stores this value 

into itself in a single communication step. Similarly, the 

maximum operation allows each particle to find the 

maximal value of those owned by all neighbors. 

B. Gradient operation 

The gradient operation is a way for each particle to 

know distance from a specified particle as the gradient 

value. Each particle finds the local minimal value of 

neighbor gradient values and the local maximal value of 

ranges to its neighbors which ranges are known as a 

priori information. Sum of these local values is stored as 

new gradient value in single communication step of the 

operation. By repetition of the local communication, all 

particles know their distance values from the specified 

particle. 

C. Generation and destruction operations 

Inspired by cell division and death, we implement 

the generation and destruction operations which 

increase and decrease particles, respectively. In the 

generation operation, a particle reproduces itself with its 

own state at an adjacent point. On the other hand, in the 

destruction operation, a particle kills itself. In our model, 

we do not consider the energy consumption with 

reproduction of particles and the remains of particles in 

the destruction operation. 

3. Mechanism of our simulator 
We built a simulator which executes the particle 

operations just as we introduced above. After 

initialization, the simulator repeats updating states of 

particles and visualizing them. The single update 

process executes the necessary tasks as follows. At first, 

the simulator executes the neighbor search for all 

particles, calculates viscoelastic force between all 

particle pairs, and then moves all particles by the 

calculated force. Next, the simulator executes the 

neighbor search again because neighbor particles are 

changed by their movement. Finally, each particle 

communicates with its neighbors and updates its state 

which includes some values related to the operations. 

Only one communication step for one particle is 

allowed in a single update. Thus, by repetition of the 

update process, the value for each operation converges. 

In our simulation, we use modestly converged values 

for a cascade of operations. 

4. Dynamic neighbor search in 3D space 
In our system, it is necessary for each particle to 

always know its neighbor particles so that it can contact 

and interact with each other. Since we assume that 

particles move by some operations, we have to 

dynamically update neighbors at every computation step 

of each operation. To search for neighbors, we need not 

check all particles, but need to check only some 

particles which are included in particular divisions of 

space called cells. Each cell is a 3D grid with size of the 

neighborhood radius of a particle. We divide space into 

such cells and index them depending on coordinates of 
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their minimal corner. Furthermore we associate each 

particle with its corresponding cell index. For searching 

for neighbors of a particle, it is only necessary to check 

particles inside 26 cells around the cell containing the 

particle. In addition to this cell indexing approach, we 

use also subdivision of the cell in order to further reduce 

search space. 

 

III. EXAMPLE 

In this section, we demonstrate the process to form a 

tubular structure as an example of our approach. We 

explain an algorithm for modeling tubular structure and 

then show simulation results of this example using our 

simulator. 

1. Algorithm for modeling tubular structure 
We assume that there is one computational particle 

at the initial condition. This particle begins the 

generation (divide) operation and keeps on dividing 

until the number of particles is sufficient to form any 

structure. After the particles are clustered, one particle 

on the surface of the cluster is selected as a source.   

By searching for the particle which has the minimal 

number of neighbors in all particles, we can find the 

source on the surface. We then execute the gradient 

operation from the source and choose the destination 

particle which has the maximum gradient value, that is 

to say, the farthest particle from the source. The 

destination is also assumed to be on the surface of the 

cluster. Figure.1 shows the state of choosing the source 

and destination particles in the cluster. 

 

 

Fig.1. Choosing specific particles 
After both source and destination particles are found, 

each particle starts the gradient operation towards the 

destination to determine the specific particles lying 

between the source and the destination. We call the line 

of these particles “path”. For a particle on path, the sum 

of its gradient values from the source and from the 

destination is almost equal to distance between the 

source and the destination. Neighbors of particles on the 

path comprise a channel which connects the source and 

the destination with slight width. In Figure.2, it is 

shown how to make the path and channel in the cluster. 

After determination of the particles in channel, each 

particle in the channel executes the destruction 

operation and disappears from the space. 

 

 

Fig.2. Creating tubular structure 

 

An important issue in this algorithm is that each 

particle executes an identical program and 

communicates with only its neighbors. Although each 

particle has no a priori knowledge about other particles 

except for its neighbors, it is distinguished from other 

particles by its internal state such as the gradient value. 

Therefore, we can control identically programmed 

particles in order to model desired structures like this 

example. 

2. Simulation results 
Using our simulator we could construct a cluster of 

500 particles which is shown in Figure.3. There was 

only one particle at the initial condition and then the the 

number of particles started increasing by the generation 

operation. To cluster particles as shown in Figure.3, we 

investigated and optimized some parameters of the 

simulator by trial and error. These parameters include 

neighborhood radius, spring constant, density constant 

and other values related to calculate viscoelastic force. 
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Fig.3. A cluster of 500 particles 

 

After clustering particles and finding the source, 

each particle executed the gradient operation from the 

source and then could determine the destination particle 

which had the maximum gradient value. Each particle 

also could judge whether it was on the path and 

furthermore in the channel. The particles in the channel 

executed the destruction operation and disappeared. As 

a result, we obtained a tubular structure like a bead (see 

Figure.4). 

 

 

 

 

 

 

 

Fig.4. A tubular structure 

 

IV. CONCLUSION 

In this paper we have presented a new approach for 

constructing a specified structure from a cluster of 

computational particles which are programmed to 

execute an identical operations. To cluster the particles 

we implemented the generation operation and gave 

them slight motility based on viscoelasticity among 

particles. As an example of our approach, we 

demonstrated construction a tubular structure by each 

particle’s executing an identical program. Although we 

do not have actual implementation of such 

programmable particles at present, we expect that we 

can possibly use living cells for our research in future, 

because a cell behaves according to its program, that is 

DNA. 

 

V. FUTURE WORKS 

Our future work can be considered in several ways 

as follows. 

・We need to increase efficiency of each simulation 

step because we want to enlarge the size parameters 

of our model such as the simulation space and the 

number of particles. To this end, we will attempt to 

optimize the dynamic neighbor search and the 

calculation process of local interactions.  

・Although we currently assume a spherical cluster 

of particles in our model, we need to consider a 

cluster of any shape like a distorted one.  

・In this paper, we demonstrated construction of a 

tubular structure. We want to extend our study to 

establish a new method for constructing arbitrarily 

complex structures. 
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