Development of an autonomous-drive personal robot "An environment recognition system using image processing and an LRS"

Yasushi Kibe and Hideki Ishimaru and Eiji Hayashi

Department of Mechanical Information Science and Technology Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology 680-4, Kawazu, Iizuka-City, Fukuoka Prefecture, Japan

Abstract: We are developing an autonomous personal robot able to perform practical tasks in a human environment based on information derived from camera images and an LRS (a laser range sensor). It is very important that the robot be able to move autonomously in a human environment, and to select a specific target object from among many objects. For this reason, we developed a system by which these functions would become possible. This environmental recognition system is composed of an autonomous driving system and an object recognition system. First, the autonomous driving system calculates the driving route from the visual information provided by the CCD camera. The robot is driven by this system. The object recognition system proceeds by identifying the specified object using image processing and an LRS. The robot can grasp the object using this system. An environment recognition system is essential to both of these functions. Here we explain the algorithm by which the robot recognizes the surrounding environment. In addition, we apply this system to the robot, evaluate its performance and discuss our experimental results.

Keywords: Personal robot, monocular camera, Image processing, LRS, Autonomous driving, Object recognition

1. Introduction

In the near future, autonomous self-driving robots are expected to provide various services in human living environments. For this to occur, the robots will need to gain a grasp of the human environment. Therefore, systems to provide environmental recognition based on image information are being widely studied. However, it is very difficult to recognize all driving environments from image information only; so far, no prospects for such a system have emerged. Here, we report on the development of an autonomous personal robot able to perform practical tasks in a human environment based on information derived from camera images and an LRS (a laser range sensor), which is used to acquire twodimensional distance information.

The system for this robot is composed of an autonomous run system for movement and an object recognition system for the recognition and grasping of an object. First, the autonomous run system decides upon a robot driving command based on information in the limited space map. Information such as walls and barricades are set to the map, and the data obtained from the CCD camera are compared against the map data. The route is decided, and the robot drives. The object recognition system is composed an object-recognition processing part and a location-information acquisition processing part, both of which use the monocular camera and the LRS. An object is recognized and identified using range information obtained from LRS in addition to the processed image data provided by the camera. The robot performs a grasping operation for the object according to this system.

2. System for robot

Our robot has a drive mechanism consisting of two front and two back wheels. The front wheels are attached to a motor that operates the wheels on either side independently, while the back wheels function as castor wheels. This method has the advantage of allowing a small turning radius. In addition, to acquire image information, both a single CCD camera with approximately 2,000,000 pixels and an LRS are installed on the head of the robot and can be rotated to all sides by two motors. DC servo motors are used for the robot's drive mechanism, and position and speed control are achieved by the control system of the drive mechanism. The robot also has two arms and hands equipped with sensors, which enable it to respond to the various demands of humans. Finally, an installed wireless LAN can provide remote control for humans. All devices are controlled by a PC, and lead batteries supply the robot's electric power.

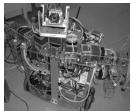


Fig. 1 Our developed robot

3. Specification of the LRS

LRS is a noncontact laser measurement system; our LRS is made by HOKUYO AUTOMATIC CO., Ltd.,. The maximum detection distance of this LRS is 4m. Moreover, the horizontal plane space is scanned by 270° at intervals of about 0.36° ($360^{\circ}/1024$) to detect both the distance and the direction of the target body. This LRS requires a time of only 100 msec for a single scan. Therefore, a reduction in the distance acquisition time was enabled by using LRS to gain details about the target object recognized with the monocular camera. Fig. 2 shows the externals of the LRS.

Fig. 2 Scanning laser range sensor

4. Autonomous driving system

4.1 Outline of the system

We developed an autonomous driving system for robots that can move with image information captured by monocular CCD camera. It has two subsystems: a route searching system, which decides the course of the robot, and a course correction system, which traces a safe course during the actual run.

4.2 Method for autonomous driving

In this section, we explain the method for autonomous driving. The flow for the autonomous driving is shown in Fig. 3.

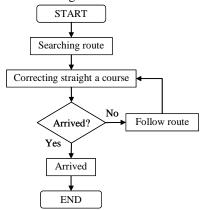
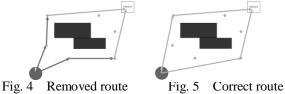



Fig. 3 Autonomous driving system flow

I. Route searching system

In this system, the robot searches for routes based on a limited space map. This map includes information such as the start position of the robot, the goal, walls, and danger zones. When there is a wall and an obstacle on the course to a goal, the robot travels along the middle point between them. The robot always takes the shortest route and removes other routes. The system is shown in Figs. 4 and 5.

II. Course correction system

Using this system the robot corrects its path by measuring and equalizing the distance on the right and left to prevent it from crashing into a wall.

(i) The data are stored in a database.

The data are the pattern of the slope of the line on the image, and they are made and stored in database. The data are calculated from the width of the course and the CCD camera angle. The width of the course, direction of the robot, slope of the line and the distance from the center of the course are stored in the database. (ii) Image processing

The robot acquires the image, and it is processed by edge-based binarization and noise removal. After that, straight lines are extracted, and the image is processed by the Hough transform into straight lines. This process is shown in Fig. 6.

(iii) Correcting self-position

The robot estimates its position and direction and corrects the latter by a straight line matched with the data from the database.

Original image Noise remove Hough transform Fig. 6 Image processing

4.3 Experiment of system evaluation I. Method of experiment

In order to evaluate this system, we experimented at Research building 3F of Kyushu Institute of Technology. The total distance that the robot ran was about 35m, and we verified that its systems worked successfully.

The images used in the experiment were acquired from a camera mounted on the robot. This camera was at a height of 875mm from the floor and its depression angle was 20 degrees.

II. Results of the experiment

The robot could reach the goal thanks to the successful operation of the systems. The course correction system was at work during the run. A picture of the course that the robot followed is shown in Fig. 7. This shown that robot ran in a crooked diagonal line, but the course correction system worked, so that the robot corrected the gap.

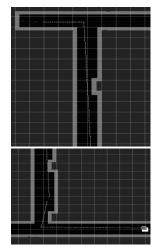


Fig. 7 Results of experiment

5. Object recognition system

5.1 Outline of the system

We developed an object recognition system for robots that can acquire the target object position with image information captured by monocular CCD camera and range information obtained by LRS. This system can acquire the object position on the assumption, for example, that the object is placed on a desk. The system then acquires the location information of the object by using LRS with the recognized object. Afterwards, the arm is driven based on the location information, and the object can be grasped and held.

5.2 Method for object recognition

In this section, we explain the method for object recognition. The flow for the object recognition is shown in Fig. 8.

I. Object recognition processing part

This processing part can search for objects with image information captured by a monocular CCD camera. The system then searches for the object with the shape and color of the object registered in the database. This processing part notes the shape and color of the object and then step by step narrows down the objects it "sees". Fig. 9 shows an example of the results of the object recognition processing.

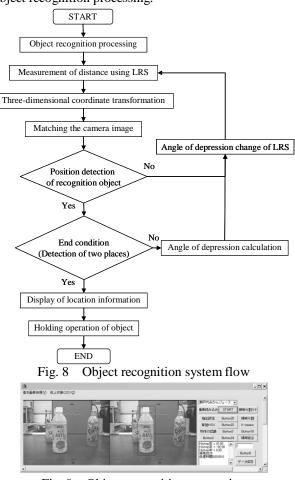


Fig. 9 Object recognition processing

II. Measurement of distance using an LRS

The LRS then acquires range information on the object recognized in the object recognition processing. The LRS is fixed to the robot head, and moves with the camera. Fig. 10 shows the situation in which the range information is acquired.

Fig. 10 Position information acquisition situation

III. Three-dimensional coordinate transformation

The range data of LRS is range information from the irradiation point to the measurement point of the LRS. Therefore, this range data is converted into threedimensional coordinates. This conversion is derived in the provided data based on the distance data and the horizontal and perpendicular angles.

IV. Matching the camera image

The system successfully matched the LRS data to the camera image by integrating the camera image with the LRS data.

V. Position detection of recognized object

Whether the LRS data accurately describes the location information of the object was judged. This involved determining which position of the camera image provides the best measurement point for LRS to detect the object. If the object area recognized in the object recognition processing corresponds to the image coordinates of the LRS measurement point, the measurement can be considered successful. This system acquires three-dimensional coordinates in the vicinity of the center of the object as the location information, provided that the LRS measurement point is at the 60% height level, from the bottom of the object. In addition, to prevent false detection and to provide good, accurate detection, data acquisition is done in a second place in the area (below the 60% mark).

VI. Angle of depression calculation method

The system acquires location information on the object at two places (an upper part and a lower part). After the first location information is acquired in the upper part, the angle of depression of LRS is calculated according to this information. If the distance of the object and the robot can be found, the angle of depression can be calculated from the image information by a geometrical calculation.

VII. Display of location information

When the location information of the recognition object in two places can be acquired, final location information on the object is displayed in two places. Because it is preferable that the acquired positional data reflect the exact position of the object, a part in the center of the two examined places is acquired as the object location information.

VIII. Grasping operation of object

The target object is located within a certain distance (2 feet) of the robot. Target coordinates are first set in front of the object, based on the acquired object position, and the arm is driven to the coordinates. An image is acquired after the arm arrives, and the remaining drive distance of the arm is calculated from the position of the

object and the distance of the hand to the object. The arm is driven again based on the calculated driving amount, and the grasping operation of the object is performed.

5.3 Experiment of system evaluation

I. Method of experiment

We performed the following experiment to evaluate the performance of this system in the grasping operation of an object, in which it searches by object recognition processing. The angle of depression of the camera was set at 10° . Fig. 11 shows the experimental environment when the object is a PET bottle. Its location was on a single-color desk in the laboratory.

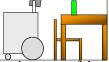


Fig. 11 Experiment environment of the target PET bottle

II. Results of experiment

Fig. 12 shows the result of the robot's actually performing the grasping operation of the target object. The target object was a PET bottle.

Fig. 12 Result of arm drive experiment

The arm was able to be driven to the location coordinates of the object, and the grasping operation by the hand was able to be performed. However, the location of the hand varied a little in relation to the location of the object. Therefore, it is necessary to improve the accuracy by which the arm is driven.

6. Conclusions

We propose a system that recognizes the driving environment of a robot using image processing and an LRS. This environmental recognition system is composed of an autonomous driving system and an object recognition system. The driving environment of the robot can be processed by these systems, and the behavior pattern of the robot can expand. At present, it is possible to move in a preselected area, and to locate and grasp a target object. Expansion of the action area and the transportation operation of the robot with the object are in our sights and will be developed in the future.