
A Visual Debugger for Developing RoboCup Soccer 3D Agents

Yosuke Nakamura and Tomoharu Nakashima

Osaka Prefecture University, 1-1 Gakuen-cho,Nakaku,Sakai,Osaka
(Tel : 81-72-254-9351; Fax : 81-72-254-9351)

(nakashi@cs.osakafu-u.ac.jp)

Abstract: In this paper, we introduce a visual debugger that helps us develop soccer agents for RoboCup Soccer 3D
Simulation. The visual debugger enables us to graphically monitor the internal state of a soccer agent and the soccer
field such as joint angles, the position of objects, and text messages. We employ a server/client framework where the
debugger acts as a server while the agent acts as a client. A soccer agent connects to the debugger using TCP/IP and sends
the information about the field and the internal status. The information that is sent from the soccer agent to the visual
debugger consists of three parts: visible objects of the soccer field, the joint angles of the soccer agents, and text messages
from the agents. These are shown in separate components on the screen of the debugger. The debugger draws the current
pose of the soccer agent from the information on the joint angles that is sent from the soccer server. Text messages are
used as a debugging message. The developer of soccer agents are allowed to check if the developed agent works properly
through the screen of the visual debugger. A soccer agent that is manually controlled using a game-pad is also included
as a part of the debugger. Each of the above features is explained in detail.

Keywords: RoboCup, soccer robot, multi-agent system

I. INTRODUCTION

Soccer simulation league is one of the oldest leagues
in the RoboCup competitions. The main aim of the soc-
cer simulation league is to develop decision making sys-
tems that achieve intelligent behavior in both high and
low levels. It is expected that successful decision mak-
ing systems are translated to that of real robots. The de-
velopers of soccer agents in the simulation league have
proposed various techniques from both top-down and
bottom-up manners. For example, Stone[1] proposed
a layered approach to achieve a complex decision sys-
tem. FC Portugal proposed a flexible formation model
that is based on the ball position[2]. These are catego-
rized as top-down approaches. On the other hand, Stone
et al.[3] proposed a neural network-based approach for
learning low-level skills. Sean et al.[4] also showed that
the team formation is successfully evolved by a genetic
programming. A fuzzy reinforcement learning method
is proposed for a ball intercept task by Nakashima et
al.[5].

In the early years of the RoboCup soccer simulation
league, soccer matches were played on a virtual two-
dimensional field. The first prototype of 3D simulation
was proposed by Oliver[6] in 2003. The community of
the 3D simulation has rapidly grown up since then. In
2005 the first competition of 3D simulation was held
in Osaka, Japan. The soccer agents were modeled as
a sphere object with a kick device. In 2007 bipedal hu-
manoid robot model was employed for soccer agents.
This made the development of soccer agents very chal-
lenging because not only intelligent decision making but
also the movement of joints have to be considered when
implementing even lower level skills. The standard way
to check the behavior of developed agents is to use the

soccer monitor, which is included in the package of the
soccer server[7]. Although the soccer monitor is use-
ful to check the movement of joints of soccer agents, it
is not possible to check the internal status of the soccer
agents such as vision, ground force, body rotation, and
their decision making process. Furthermore the soccer
monitor does not record the movement of soccer agents
during the course of the game. Thus it is not possible to
play back the match even if we want to retrospectively
watch the behavior of the soccer agents. These things
make the development of 3D soccer agent very difficult.
Even if we use files to replay a match, the internal status
of agents such as sensory information and the intention
of agents cannot be shown and we only have to guess
them from the behavior of the agents.

In the 2D simulation league, several high func-
tional debuggers have been proposed. For example,
soccerwindow2[8] has useful features such as monitor-
ing internal status, modeling team formation based on
the ball position. The developer of soccer agents can
also check the decision making process inside the soc-
cer agents through the messages that are sent from the
soccer agents to soccerwindow2. Furthermore, soccer-
window2 has a play-back function where the developer
can check the behavior of the soccer agents at the past
time steps. SoccerScope[9] has similar useful features
as soccerwindow2, though SoccerScope can analyze the
game logs and give statistics of the game such as the
number of successful pass, ball possession rate, and the
total number of pass, dribble or shoot. In contrast, in
3D simulation league,there are no such tools available in
public. Therefore, we have developed a visual debugger
as a development support tool that connects to an agent,
displays sensor information and checks the agent’s be-
havior.

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11), 
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 934



II. ROBOCUP SOCCER 3D SIMULATION
LEAGUE

RoboCup Soccer 3D simulation league is the project
where autonomous agents play soccer in a virtual 3D
soccer field. The first prototype of 3D simulation was
proposed in 2003. In 2005 the first competition of 3D
simulation was held in Osaka, Japan. In this competi-
tion, the soccer agents were modeled as a sphere object
with a kick device. In 2007, a bipedal humanoid robot
model was employed for soccer agents. This made the
development of soccer agents very challenging because
not only intelligent decision making but also the move-
ment of joints has to be considered when implementing
even lower-level skills. The humanoid robot which was
used in the RoboCup world competition 2008 is given in
Fig. 1. This robot model is based on the Nao[10] which
is used in the standard platform league. In the RoboCup
world competition 2009, one team consisted of three
robots. Six-vs-six games were played in RoboCup 2010.

Fig. 1. Humanoid robot

Each soccer agent is autonomously controlled in the
3D simulation league. A game is divided into two halves
and each half has 300 seconds according to the official
rule. Since one time step is 20 ms, a half consists of
15000 steps. During the simulation, the soccer server
sends a message to agents every time step. The message
includes joint angles, the value of gyro sensor, the value
of foot force resistance sensor, the position of visible
objects, and say-messages from other agents. The gyro
sensor is equipped in torso. It senses the orientation of
the torso in the global coordinates. The foot force resis-
tance sensor informs about the force that acts on a foot.
This sensor is equipped in the bottom of feet. A soc-
cer agent can also receive the position of visible objects
(the ball, other agents, goal posts, and landmark flags)
from the soccer server. An agent is equipped with the
camera on its head and the server sends the position of
objects which are in the sight of the camera. The angle
of sight had been 360 degrees until the world competi-
tion 2008 and agents could see all objects from every-
where. However, in the 2009 competition, the angle of
the sight was changed to limit to 120 degrees and thus
agents have to turn neck and search for objects to receive

the position of objects from as broader area as possible.
An aural sensor gets one message from both teams ev-
ery 3 time steps. Agents make a decision based on the
above information. Furthermore, the decision made by
an agent must be converted to the necessary changes to
the joint angles by the agents themselves. Agents send
joint change rates to the server. There are 22 joints in
a Nao robot. To control this robot perfectly, an agent
program is required to control 22 joint angles every time
step.

The RoboCup Soccer 3D Simulation Server is avail-
able in a Sourceforge project[7]. The package includes
the soccer server, the sample agent, and the soccer mon-
itor. The soccer monitor is the standard way to check
a behavior of agents. But the monitor shows the soccer
field in the third person viewpoint and we can only check
the state of joints from their pose. Therefore, a software
tool that shows the internal state of agent is required. In
this paper, we develop a visual debugger as a develop-
ment support tool that connects with an agent, displays
the value of sensors and checks the agent’s behavior. We
also develop a soccer agent that can be controlled by a
game-pad as a part of the debugger. In the next section,
we introduce the visual debugger in detail.

III. VISUAL DEBUGGER

1. Overview

The visual debugger is connected to a soccer agent
via TCP/IP and receives information on the field and the
agent’s internal status every cycle. The functions that the
visual debugger provides make it easier for us to develop
agents. A screen shot of the visual debugger is shown in
Fig. 2. The soccer agent can send a one-line message to
the debugger at each time step. The message contains
the information on the state of the field and the agent
graphically. The visual debugger graphically shows the
information on the display.

Fig. 2. The visual debugger

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11), 
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 935



2. Debug Message

The one-line message from the soccer agent includes
four pieces of information, that is, game state, visual in-
formation, joint angles, and gyro information. We ex-
plain each of the above information in detail.

• Game State
The game state information consists of the game
time, the playmode, each team’s name, and each
team’s score.

• Visual Information
The agent receives the visual information from the
soccer server in three dimensional polar coordi-
nates. The visual information is then sent to the
visual debugger as a three dimensional vector in
Cartesian coordinates. This information provides
the position of visible objects.

• Joint Angles
Joint angle includes the joint angles of the agent at
the current time step. One message format corre-
sponds to one joint angle.

• Gyro Information
Gyro information includes the value of the gyro
sensor. The gyro sensor shows the angular velocity
of agent’s torso.

3. Visible Objects in the Soccer Field

The debugger shows visible objects in the soccer field
within the agent’s view cone as explained in subsection
3.2. The agent sends the debugger a message that con-
tains field information about whether each object is in
the eyesight of the agent or not and if it is visible, its
position is also included in the message. The position
of visible objects is given in the local coordinates of the
agent. The debugger converts it into the absolute coor-
dinates (i.e., the origin is set to the center of the field)
and draws it in the overhead view of the soccer field.
Figure 3 shows an example of the overhead view of the
soccer field. In Fig. 3, the arrow in the rightside of the
field indicates the position and direction of the agent’s
torso, two lines from an arrow to rightside and to top
of the figure shows the eyesight of the agent, the white
circle indicates the ball, the light gray square indicates a
teammate player, and the dark gray square indicates an
opponent player. The debugger draws each of the above
objects when it is in the agent’s eyesight. The position
of landmarks such as flags and goal posts are described
by gray circles or black circles. The positional relation
among landmarks are pre-specified by the soccer server
according to the official rule of the league. Therefore, if
at least two landmarks are visible to the agent, the po-
sition of landmarks which are out of sight can be iden-
tified. Lighter circles in Fig. 3 are visible, while black
circles are out of sight.

Fig. 3. Visible object in the soccer field

4. Pose of the Agent

The debugger can also draw the pose of the agent and
the positional relation between agent’s feet and the ball
as shown in Figs. 4 and 5. In Fig. 4, the left image
shows each joint position from the frontal view and the
right sagittal view. In both images the pose of the agent
is shown by nodes and edges. The top circle indicates
the head, the under circles indicate neck joint and torso.
Square nodes indicate leg, heel, and toe joints. In the
left images, the right and left circles means arm joints.
These figures are drawn based on the message from the
agent that contains the joint angles of each time step.
Shaded area is the eyesight of the agent. In the left im-
age of Fig. 4, the horizontal axis and the soccer field are
assumed parallel, and in the right image of Fig. 4, the
vertical axis and the soccer field are orthogonal. The de-
veloper of the agent checks the pose of the agent from
the two images in Fig. 4.

The positional relation between agent’s feet and the
ball is shown in Fig. 5. Figure 5 is the mapping of each
joint position to the horizontal plane. The white circle
indicates the ball, the black circles indicate the nodes of
the agent; in this figure they represent the upper body
of the agent, and the black squares indicate the lower
body of the agent. When the ball is in the eyesight of
the agent but is too far to draw in the display, a white
triangle locator appears to indicate the direction toward
the ball.

Fig. 4. Pose of the agent

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11), 
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 936



Fig. 5. Position of feet and ball

5. Replay Function

The debugger can replay the game without running
the soccer server by loading a text file which includes
all debug messages sent by the agent during a game.
We call this text file “debug message file” in this paper.
The main difference between a debug message file and
a log file is that the debug message file contains the in-
ternal information from the viewpoint of an agent while
a log file just records the joint angles each time step.
While replaying a game from a debug message file, ex-
tra operations such as pause, go-to-next-step, or go-to-
previous-step are available. By using these functions,
we can examine an agent’s behavior in detail during a
game. These functions are also available while a soccer
match is played.

6. Manually-Operable Agent

The behavior of an agent sometimes requires the in-
teraction with other agents. Passing the ball to a team-
mate and avoiding opponent agents that are approaching
the agent are examples of such behaviors. Even though
there are released binaries of those teams who partic-
ipated in previous competitions, it is hard to examine
those behavior using the released binaries because soc-
cer agents are autonomously moving and never manu-
ally controlled. To overcome this problem, it is helpful
to prepare an agent that can be manually controlled. For
this purpose, we have developed a manually-operable
soccer agent. To control the agent, we use a USB Game-
pad with 12 buttons and 2 sticks. Figure 6 shows the
game-pad for manually operating the agent.

Fig. 6. Game-pad

IV. CONCLUSION

In this paper, we introduced a visual debugger that
helps develop a soccer agent of the RoboCup soccer 3D
simulation league. We also showed a manually-operable
agent by game-pad for debugging. Using the debugger,
the visible object on the soccer field and agent’s inter-
nal state are graphically shown. The debugger can also
replay the game on itself by loading a debug message
file so that we can check agent’s behavior in detail. The
source code of the visual debugger will be available in
the near future. We hope the debugger makes the agent
development more efficient for all teams of soccer sim-
ulation 3D league.

REFERENCES

[1] Stone P (2000), Layered learning in Multiagent
Systems: A Winning Approach to Robotic Soccer.
MIT Press

[2] Reis L P, Lau N, Oliveira E C (2001), Situa-
tion Based Strategic Positioning for Coordinating
a Team of Homogeneous Agents. Balancing Reac-
tivity and Social Deliberation in Multi-Agent Sys-
tems, LNCS 2103:175–197

[3] Grasemann U, Stronger D, Stone P (2007), A
Neural Network-Based Approach to Robot Motion
Control. RoboCup 2007: Robot Soccer World Cup
XI:480–487

[4] Luke S, Hohn C, Farris J, et al. (1997), Co-
Evolving Soccer Softbot Team Coordination with
Genetic Programming. RoboCup 1997: Robot
Soccer World Cup I:398–411

[5] Nakashima T, Udo M, Ishibuchi H (2003), A
Fuzzy Reinforcement Learning for a Ball Inter-
ception Problem. RoboCup 2003: Robot Soccer
World Cup VII:559–567

[6] Kogler M, Obst O (2003), Simulation League: The
Next Generation. RoboCup 2003: Robot Soccer
World Cup VII: 458–469

[7] Spark - A generic physical simulator, Sourceforge
project,
http://sourceforge.net/projects/simspark/files

[8] rc-tools, released web page,
http://rctools.sourceforge.jp/pukiwiki/

[9] SoccerScope2003, released web page,
http://ne.cs.uec.ac.jp/˜newone/SoccerScope2003

[10] Nao, Aldebaran web page,
http://www.aldebaran-robotics.com

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11), 
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 937




