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Abstract: Ground penetrating radars (GPRs) have been studied to reconstruct a subsurface image. Signal observed
by the GPRs typically includes very strong noise and reconstruction of the image is a difficult task. We propose a
new subsurface imaging method based on the framework of the Bayesian super-resolution. In the framework, we can
incorporate additional information into the reconstructed image by considering a smooth-gap prior, which can represent
smoothness of the subsurface image and gaps between materials, and improves the quality of the reconstructed image.
We investigated performance of the proposed method with a synthetic GPR dataset, and confirmed the validity of the
proposed method.
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1. Introduction

In the past, anti-personnel mines were mainly made
from metals and hence metal detectors were typical tools
for detecting buried anti-personnel mines. However, recent
plastic mines are difficult to detect because they include few
metal parts. Highly sensitive metal detectors may enable us
to find plastic mines, but they also induce high false detec-
tion error caused by small metallic pieces such as nails or
cans. To overcome this difficulty, ground penetrating radars
(GPRs) have been studied. A GPR transmits electromag-
netic waves into a ground surface, observes the reflected
waves, and reconstructs an image that represents the con-
dition of the ground subsurface. An observed signal in-
cludes very strong noise that degrades the quality of the
reconstructed image and the performance of detection. To
improve the image quality, some methods for subsurface
imaging with GPRs have been proposed.

Feng and Sato [1] tried to reconstruct the subsurface im-
age by applying the pre-stack migration (which is a subsur-
face imaging method) for synthetic aperture radars (SARs).
A SAR has two or more antennas that transmit or receive
electromagnetic waves. The method improves the image
quality and shows clear shapes of objects, however, still has
noise in the reconstructed image, and the resultant image
causes high false positive error for mine detection. Gur-
buz et al. [2] formulated the imaging problem as an inverse
problem based on the model used in [1], and applied the
Dantzig selector, which assumes sparseness with respect to
the existing probability of buried objects. The assumption
of the sparseness is a kind of regularization for the inverse

problem, and the method for reconstructing images is more
informative for specification of the location of subsurface
objects. However, the reconstructed images lose informa-
tion on the shapes of objects, which makes it difficult to
distinguish mines from other objects.

We propose a new subsurface imaging method based on
the Bayesian inference. In the Bayesian framework, we can
incorporate additional information into the reconstructed
image by considering a smooth-gap prior. The prior can
describe smoothness of the subsurface image as well as
gaps between materials, by introducing binary latent vari-
ables representing whether there is a gap or not between
two points. However calculation of the posterior distribu-
tion using the prior is not computationally feasible because
marginalization of latent variables for all pair of points re-
quires exponential computation time. To overcome the dif-
ficulty, we employ the Variational-Bayes (VB) method, in
which the posterior is assumed to be written in a factorized
form. We investigated performance of the proposed method
with a synthetic GPRs datasets, and confirmed the validity
of the proposed method.

2. Bayesian Framework

The GPRs use electromagnetic waves to explore the
subsurface of the target. In this paper, we consider a bistatic
GPR, which has two antennas, one of which transmits
electromagnetic waves and the other receives the reflected
waves. For subsurface imaging, the GPRs observe the re-
flected signals yk ∈ RNt at k-th scan points and are moved
to the next scan point; and as a whole, a dataset {yk}Kk=1
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is observed. We assume that the transmitted waves are re-
flected at only the boundary of two materials with different
dielectric constants and then the received signals include
information on the boundary in the subsurface. Addition-
ally, we assume that the observed signals at the scan point
are represented as a linear superposition of reflected signals
from points over the boundary at a scan point. In a practi-
cal sense, there are interactions among the reflected signals
from points in the subsurface and then the assumption of
linear superposition cannot be appropriate; however, we use
the model for simplicity.

Let us consider a physical model that represents a rela-
tionship between the received signal reflected from a point
p and the transmitted signal s(t) as

ζk,p(t) =
σps(t− τk(p))

Ak,p
(1)

where ζk,p(t) is the received signal reflected from the point
p in the subsurface at the k-th scan point, τk(p) is the total
round-trip delay between the antennas and the target point p
at the k-th scan point, σp is the reflection coefficient of the
target point and Ak,p is a scaling factor accounting for loss
of the signal. Note that the reflection coefficient is positive
when the target point p is on the boundary of two materials
with different dielectric constants, and otherwise is zero. A
whole model of the observed signal dk(t) at k-th scan point
is the superposition of reflected signals and then is written
as

dk(t) =
∫∫∫

Ω

ζk(x, y, z, t)dxdydz (2)

where Ω is a target region of interest. This is called the
point-target model [1][2].

To calculate the right hand side of (2), we discretize the
integration in (2) as follows:

dk(ti) =
N∑

j=1

s(ti − τk(j))
σ(j)
A(k, j)

(3)

where j is an index of a discretized point in the target re-
gion Ω, ti = t0 + i/Fs, t0 is an initial time of measurement
and Fs is a sampling frequency. We observe that a vector
dk = (dk(t0), . . . , dk(tNt−1))t of dk(t) is written as

dk = Wkx (4)

where x is an N -dimensional vector whose n-th element is
σ(n)/A(k, n) and Wk is a matrix whose (i, j) component
is

Wk(i, j) = s(ti − τk(j)) (5)

Here we assume that the GPRs measurement data at k-th
scan point is represented as

yk = Wkx + ε (6)

where ε is measurement noise. Note that the n-th element
of x represents a reflectivity profile corresponding to the
n-th point in the target subsurface space. In other words,
x corresponds to the subsurface image itself of the target
space and then our goal is to estimate x using the observed
dataset {yk}Kk=1.

2.1. Probabilistic formulation

We assume that a probability distribution of the mea-
surement noise ε is given by an isotropic Gaussian with a
mean vector 0. Then a conditional distribution of yk given
x is written as

p(yk|x) = N (yk|Wkx, β−1I), (7)

=
1
Z

exp
(
−β

2
||yk −Wkx||2

)
(8)

where β is a prediction parameter and Z is a normalization
constant. As a prior distribution of x, we employ the fol-
lowing smooth-gap prior distribution [3]

p(x) =
∑

η

p(x,η), (9)

p(x,η) =
1
Z

exp
(
−ρ

2
E(x,η)

)
(10)

where η is a vector of binary latent variables, each of which
represents the gap between two materials, ρ is a hyper pa-
rameter that controls the strengh of the effect of the prior
distribution, andE is an energy function defined as follows:

E(x,η) =
∑
i∼j

(
ηij(xi − xj)2 + (1− ηij)λ

)
. (11)

The summation
∑

i∼j is taken over all pairs of neighboring
pixels. The latent variable ηij represents the local charac-
teristics of the prior and indicates whether a pair of pixels
take similar values or not. When ηij = 1, the pixels i and
j are smoothed due to the quadratic penalty, and there is
no effect for the smoothing when ηij = 0. Thus, this prior
controls
whether there is a gap or not between two materials by the
latent variable η.

We can rewrite the joint distribution (10) as

p(x,η) = p(x|η)p(η) (12)

where,

p(η) = Ber(η|ν), (13)
p(x|η) = N (x|0, ρ−1A−1

η ). (14)
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Here, ν = 1/(1 + exp(−λρ/2)) is a parameter for the
Bernoulli distribution Ber(η|ν) =

∏
i∼j ν

ηij (1 − ν)1−ηij ,
and (i, j) component of a matrix Aη is defined by

[Aη]ij =


∑

k∈N(i) ηik, i = j,

−ηij , i ∼ j,
0, otherwise,

(15)

where N(i) is the set of neighboring pixels of the pixel i.
Then the posterior can be strictly calculated as follows:

p(x|{yk}Kk=1) =
p(x)

∏K
k=1 p(yk|x)

p({yk})
(16)

=
∑

η

p(η|{yk})N (µη,Ση), (17)

where

Ση =

[
ρAη + β

(
K∑

k=1

Wt
kWk

)]−1

, (18)

µη = βΣη

(
K∑

k=1

Wt
kyk

)
. (19)

We employ the maximum a posteriori (MAP) estimate∑
η p(η|{yk})µη of (16) for the estimated of subsurface

image x̂. However, since this estimate has the summation
over all pairs of neighboring pixels, it requires exponential
order of computational complexity and hence it is impossi-
ble to explicitely compute the estimate. To cope with this
problem, we employ Variational-Bayes (VB) method to ap-
proximate the posterior in this study.

2.2. Variational-Bayes method

For the VB approximation, we introduce a trial distribu-
tion q(x,η) which maximizes the variational-
energy function

F (q) =
∑

η

∫
q(x,η) ln

p(x,η, {yk})
q(x,η)

dx. (20)

The trial distribution can approximate p(x,η|{yk}) since
maximization of the variational-energy function with re-
spect to q is equivalent to minimization of Kullback-Leibler
divergence between p(x,η|{yk}) and q(x,η). Although
the trial distribution can be an arbitrary probability distribu-
tion for the unknown variables x and η in principle, for the
sake of tractability, we assume that it can be factorized as:

q(x,η) = qx(x)
∏
i∼j

qηij (ηij). (21)

Under the assumption, the optimal trial distribution
maximizing (20) is analytically given as

q∗x(x) = N (x|µ,Σ) (22)

where

Σ =

(
ρEη[Aη] + β

K∑
k=1

W t
kWk

)−1

, (23)

µ = Σ

(
β

K∑
k=1

W t
kyk

)
, (24)

and,

q∗ηij
(ηij) = Ber(ηij |νij) (25)

where

νij =
1

1 + exp(−ρ
2 (λ− Ex[(xi − xj)2]))

. (26)

We employ µ in (22) as the approximated variable of the
estimated subsurface image x.

3. Experiments

In this section, we examined performance of the pro-
posed methods by comparing with the existing methods
(Feng and Sato [1] and Gurbuz [2] ) using a synthetic GPR
dataset. We created a target space as shown in Fig. 1(a):
three objects (rectangle, diamond shape, “O”) are buried in
the target space. The GPR space-time observation {yk}Kk=1

is generated by (6), in which the SNR is 15 dB. In this
experiment, the transmitter-receiver distance is 10 cm and
both antennae are a height of 10 cm. The number K of
GPR scan points is 400 and an interval of each scan point is
uniform.

Results by the Feng and Sato method, and the Gur-
buz method are shown in Fig. 1(b) and (c), respectively.
In our Bayesian approach, we applied three kinds of prior
distributions, the non-informative prior, the smooth prior
[4] and the smooth-gap prior defined by (9). The non-
informative prior is given by p(x) = N (x|0, Z−1) with
a precision matrix Z−1 = 0, whose posterior mean is
written as x̂ = (

∑K
k=1 Wt

kWk)−1
∑K

k=1 Wt
kyk. The

smooth prior is a special case of (9) and is given by set-
ting ηij = 1(∀i, j), which results in x̂ = (ρAη|η=1 +
β
∑K

k=1 Wt
kWk)−1β

∑K
k=1 Wt

kyk. Figure 1(d), (e) and
(f) respectively show the reconstructed subsurface images
with the non-informative prior, the smooth prior (β = 0.1,
ρ = 1.0) and the smooth-gap prior (λ = 0.04, β = 0.1, ρ =
1). While the proposed method with the non-informative
prior (Fig. 1(d)) failed to reconstruct the subsurface im-
age,the proposed method with the smooth prior (Fig. 1(e))
and the smooth-gap prior (Fig. 1(f)) could reconstruct the
subsurface image by which we can recognize shapes of
three buried objects. Also, Fengs method (Fig. 1(b)) could
reconstruct the image; however, boundaries of target objects
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(a) (b) (c)

(d) (e) (f)

Figure 1: (a) Target space in which three objects are buried: Horizontal axis represents a spatial position in a lateral
direction and vertical axis represents the depth. (b) Feng and Sato method, (c) Gurbuz method, (d) Proposed method with
the non-informative prior, (e) Proposed method with the smooth prior, (f) Proposed method with the smooth-gap prior

were obscure compared with Fig. 1(e), (f), and we cannot
find the object shaped like a “O”. The resultant image by
the Gurbuz method in Fig. 1(c) distinctly indicated points of
existing objects because of the assumption of the sparseness
with respect to the existing probability of buried objects.
However, information on shapes of buried objects was lost
and it is difficult to determine whether the detected object
is a landmine or not.

To investigate the quality of the reconstructed subsur-
face image, we calculate a normalized SNR of the image re-
constructed by the proposed method, with the smooth prior
and the smooth-gap prior, and the method of Feng and Sato,
respectively. We define a normalized SNR between the true
subsurface image and the reconstructed image as

10 log10

||xtrue/maxxtrue||2

||x̂/max x̂− xtrue/maxxtrue||2
[dB] (27)

where xtrue is a vector associated with Fig. 1(a) and x̂ is
an estimated vector. The result of Feng and Sato method is
-1.96 dB, Gurbuz method -0.119 dB, and the results of the
proposed method with the smooth prior and the smooth-gap
prior are 5.96 dB and 6.176 dB, respectively. Then we ob-
serve that the proposed method significantly outperformed
the method of Feng and Sato, and also, the smooth-gap
prior which can represent gap information, improved per-
formance compared to the smooth prior.

4. Conclusion

In this paper, we proposed a new subsurface imaging
method based on Bayesian framework which enables us to
use prior knowledge such that represents the smoothness
of the subsurface and the gap between two materials. We
observed that the proposed method attained better perfor-
mance compared with conventional methods for the syn-
thetic dataset. Application of the proposed method for real
datasets will be a future work.
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