
Parallelizing Fuzzy Rule Generation using GPGPU

T. Uenishi, T. Nakashima and N. Fujimoto
Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka

(Tel : 81-72-254-9351; Fax : 81-72-254-9915)
(nakashi@cs.osakafu-u.ac.jp)

Abstract: This paper proposes a method to parallelize the process of generating fuzzy if-then rules for pattern clas-
sification problems in order to reduce computational time. The proposed method makes use of GPGPUs’ parallel
implementation with CUDA, a development environment. CUDA contains a library to perform matrix operations in
parallel. In the proposed method, published source codes of matrix multiplication are modified so that the membership
values of given training patterns with antecedent fuzzy sets are calculated. In a series of computational experiments, it
is shown that the computational time is reduced for those problems that require high computational efforts.

Keywords: fuzzy if-then rule, parallel computation, GPGPU, pattern classification

I. INTRODUCTION

It is known that fuzzy systems based on fuzzy if-then
rules perform well for pattern classification problems [1].
However, the computational cost of a fuzzy system is of-
ten huge when it is applied to high-dimensional problems
with a large amount of training patterns. This is mainly
due to explosive increase in the number of fuzzy if-then
rules that are generated to construct a classification sys-
tem. One solution to this problem is to reduce the number
of rules. For example, the number of rules to be gener-
ated can be restricted, or a small number of fuzzy if-then
rules can be selected by using genetic algorithms [2].

This paper proposes a method for speeding up the pro-
cess of generating fuzzy if-then rules for pattern classi-
fication problems without reducing the number of rules.
The proposed method is to implement the fuzzy-rule gen-
eration process on GPGPU (General Purpose computa-
tion on Graphics Processing Units) in order to reduce the
computational time.

GPUs, which were originally developed for graphics
processing, have a lot of multiprocessors and have poten-
tial for high-speed parallel computation. Implementation
of GPUs is usually done in C programming language us-
ing CUDA (Compute Unified Device Architecture) [3].
To implement with CUDA, it should be considered that
a GPU has its own memories which are only accessible
from the GPU. GPU’s memories are composed of sev-
eral types of devices with different access speeds and ca-
pacities. Thus the efficiency of parallel computing with
GPUs depends on the optimality of the memory access.
However, it is difficult to design the memory access opti-
mally without understanding the details of the hardware
architecture of GPUs. In this paper, we adapt existing
implementation to fuzzy classification system.

A library, called CUBLAS, is included in the CUDA
package [4]. CUBLAS is an implementation of BLAS
(Basic Linear Algebra Subprograms) computation for
GPGPU. It allows us to develop parallel computing pro-
grams more easily without heavily modifying source
codes. While all algorithms in CUBLAS are published

as binary files, some source codes of SGEMM (Single
precision General Matrix Multiply) algorithms have been
published by the developer.

In the proposed method, calculation of the member-
ship values is parallelized by viewing them as matrix cal-
culation, using two matrices which represent antecedent
fuzzy sets and training patterns. The published source
codes of the matrix multiplication in SGEMM are modi-
fied so that the membership values of given training pat-
terns with antecedent fuzzy sets are calculated in parallel.
In a series of computational experiments, the computa-
tional time of the proposed method is compared with that
of the traditional method that only uses a CPU. It is shown
that the proposed method reduces the computational time
for pattern classification problems that have high dimen-
sionality and/or a large number of training patterns.

II. FUZZY RULE GENERATION

In this paper, we propose a method to parallelize fuzzy-
rule generation that is formulated in the fuzzy system by
Ishibuchi et al [1]. It should be noted that the method can
be applied to any forms of fuzzy if-then rules because it
parallelizes only membership calculation. An overview
of the system in [1] is shown below.

In a pattern classification problem with n dimension-
ality and M classes, we suppose that m training patterns,
xp = {xp1, xp2, · · · , xpn}, p = 1, 2, · · · ,m, are given
and each attribute of xp is normalized to a unit interval
[0, 1]. From training patterns we generate fuzzy if-then
rules of the following type:

Rq : If x1 is Fq1 and · · · and xn is Fqn

then Class Cq with CFq,
q = 1, 2, · · · , N,

(1)

where Rq is the label of the q-th rule, Fq = (Fq1, · · · ,
Fqn) represents a set of antecedent fuzzy sets, Cq a the
consequent class, CFq is the confidence of the rule Rq,
and N is the number of rules. We use triangular mem-
bership functions as antecedent fuzzy sets. Figure 1

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 889

shows triangular membership functions which divide the
attribute axis into five fuzzy sets. Suppose that an at-
tribute axis is divided into L fuzzy sets. The membership
function of the k-th fuzzy set is defined as follows:

µk(x) = max
{

1− |x− xk|
v

, 0
}
, k = 1, · · · , L, (2)

xk =
k − 1
L− 1

, k = 1, · · · , L, (3)

v =
1

L− 1
. (4)

Compatibility of a training pattern xp with a fuzzy if-
then rule Rq is denoted by µFq (xp) and is calculated as
follows:

µFq (xp) =
n∏

i=1

µFqi(xpi), q = 1, 2, · · · , N, (5)

where µFqi(xpi) is the compatibility of xpi with the fuzzy
set Fqi and xpi is the the i-th attribute value of xp.
µFqi(xpi) is calculated by equation (2).

Equation (5) implies that the same procedure is iterated
for calculating the compatibility of a training pattern with
each fuzzy if-then rule: First calculating the compatibility
for each attribute, and then multiplying them. Therefore,
we can view this process as a function of two matrices.
One matrix represents a set of fuzzy if-then rules. The
size of this matrix is N × n and is composed of N row
vectors whose lengths are n and elements are antecedent
fuzzy sets Fq. The other matrix represents a set of train-
ing patterns. This matrix is n×m and is composed of m
column vectors whose lengths are n and each column is a
training pattern xp. In the conventional matrix multipli-
cation for two matrices, the (q, p) element of the product,
rqp, is represented as:

rqp =
n∑

i=1

Fqi × xpi. (6)

We adapt the above calculation to the calculation of mem-
bership value µFqi(xpi) with the same access order as
matrix multiplication. Thus the (q, p) element of the re-
sult, r′qp, is represented as:

r′qp =
n∏

i=1

Fqi ¯ xpi, (7)

where ¯ denotes the membership calculation, i.e., equa-
tion (2). That is, the membership calculation (i.e., equa-
tion (7)) can be regarded as a matrix operation where
product operation is replaced with a membership function
and sum operation is replaced with a product operation.

The number of fuzzy rules to be generated is Ln. That
is, the number of rules increases exponentially for the di-
vision number and the dimensionality.

Attribute value 1.0

1.0

0.0

Membership value ())(x
k

µ

()x

Fig. 1. Triangular fuzzy sets

III. GPGPU

GPUs have a lot of multiprocessors and thus have high
potential for parallel computation. The performance of
GPUs have been improved tremendously. NVIDIA have
released CUDA, a development environment of GPGPU.

In CUDA, functions which are executed on a CPU are
compiled with a c-compiler (we used GCC in this pa-
per). While functions which are executed on a GPU are
compiled with NVCC (NVIDIA CUDA Compiler). Data
and control structures available for GPUs are the same as
that of CPUs. However, a GPU has its own memories
which are only accessible from it. Thus data transporta-
tion between a CPU and a GPU is required before the
actual computation. The basic procedure of GPU com-
puting is composed of four steps: A CPU transports data
to a GPU, the CPU instructs the GPU to calculate, the
GPU executes the calculation, and the GPU transports re-
sult to the CPU. Instructions for a GPU are composed
of threads, blocks, and grids depending on the level of
parallelization. A thread is an atomic execution of the
instructions. A blocks is a set of threads, and a grid
is a set of blocks. CPUs can only send instructions to
grids. Upon receiving the instructions, threads in a block
execute the calculations parallely depending on instruc-
tions, and instructions of blocks in a grid are also exe-
cuted parallely. During the calculations, threads which
belong to the same block can be synchronized and make
use of shared memory whose access speed is higher than
the global memory. The number of thread per block
and the number of blocks per grid need to be deter-
mined. Thus the efficiency of parallel computing with
GPUs depends on the memory access and the compo-
sition of threads, blocks, and grids. However, it is dif-
ficult to design the optimal memory access without un-
derstanding the details of the hardware architecture of
GPUs. As an optimized library of BLAS(Basic Linear
Algebra Subprograms) for CUDA, CUBLAS is published
together with CUDA. In CUBLAS, SGEMM(Single pre-
cision General Matrix Multiply) and DGEMM(Double
precision GEMM) are implemented by Volkov et al [5].
Some source codes of SGEMM are published by them.
Since the memory access of CUBLAS is designed effi-
ciently, user can implement their algorithms without any
concern about memory access diverting the memory ac-
cess of it. In this paper, we modify the source code of
SGEMM so that the calculation of membership values

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 890

are parallelized in order to reduce the computational time.
Representation and processing of floating point on GPUs
follows IEEE754, and we suppose that real numbers on
CPUs and GPUs are both single precision in this paper.

IV. IMPLEMENTATION

As mentioned in Section II, the formulation of mem-
bership values for fuzzy-rule generation is similar to that
of matrix multiplication. We modify the SGEMM algo-
rithm introduced in section III, to be the algorithm to gen-
erate fuzzy if-then rules. Volkov et al [5] published the
SGEMM algorithm that calculates the following equa-
tion:

Cnew = α×A×BT + β ×Cold, (8)

where A is a x× y matrix, BT is a y × z matrix, and C
is a x× z matrix. α and β are scalar values. Equation (8)
is calculated parallely by a GPU after initialization by a
CPU. In this paper we specify that α = 1 and β = 0 to
consider only the matrix multiplication. By representing
elements of the matrices as A = (aij), BT = (bij), and
C = (cij) and a temporal variable as t, the procedure to
calculate an element of Cnew, cij , can be shown as the
pseudocode in Fig. 2(a). The parallel procedure to cal-
culate compatibility is shown in Fig. 2(b), where aik is
the label of the antecedent fuzzy set, and bkj is the input
value and µ(aik, bkj) is the membership function of the
input value bkj for the fuzzy set aik. Thus the order to
access the elements of each matrices is the same as that
of the original matrix multiplication. Therefore, the con-
sistency of the parallel computation holds by replacing
addition and multiplication of the elements in matrix mul-
tiplication to multiplication and membership calculation
respectively. In addition, Volkov et al [5] employs 16× 4
threads per block and (x/64)× (y/16) blocks per grid to
make the memory access efficient. However, this limita-
tion has no effect on the calculation of the equation. Now
we can parallelize the membership calculation on GPUs
by applying the above procedure to matrices which rep-
resent antecedent fuzzy sets and training pattern sets.

We suppose that xFqi is an element of A, where xFqi is
the mode of the fuzzy set Fqi computed by equation (3):

A =

xF11 . . . xF1n

...
. . .

...
xFN1 . . . xFNn

 . (9)

t = 0
for(k = 1 to y){

t += aik × bkj

}
cij = t

(a) Matrix multiplication

t = 1
for(k = 1 to y){

t ×= µ(aik, bkj)
}
cij = t

(b) Proposed method

Fig. 2. Pseudocodes of the matrix multiplication and the
proposed method

And for a set of training patterns, we set a transposed
matrix BT as follows:

BT =

x11 . . . xm1

...
. . .

...
x1n . . . xmn

 . (10)

By applying the calculation of compatibility modified
from matrix multiplication to the above two matrices, a
N ×m matrix C is computed as:

C =

µF1(x1) . . . µF1(xm)
...

. . .
...

µFN
(x1) . . . µFN

(xm)

 , (11)

where a row vector of C corresponds to the compatibil-
ity of rules for each patterns, i.e., equation (5). The pro-
cedure to parallelize fuzzy-rule generation with a GPU
takes the following steps. First, by a CPU, A and BT are
made, and transported to a GPU. Second, the GPU cal-
culates C using the matrix operation for A, BT. Finally,
C is transported to the CPU, and then it determines the
consequents.

V. COMPUTATIONAL EXPERIMENTS

To verify the effect of parallelization with GPUs, the
computational time to generate fuzzy rules with a GPU is
compared to that of a CPU. Table 1 shows the environ-
ment of the experiments. Although GeForce GTX 295
has a dual-chip structure, we use only one chip. In the
experiments, the computational time for solving a two-
class problem is compared. 100 classification problems
with different number of training patterns and dimension-
alities were used to evaluate the computational time. The
number of fuzzy sets for each axis is fixed to two. The
results were averaged to compare the efficiency of the
parallelization. The results of the experiments are shown
in Figs. 3-6. Figure 3 shows how dimensionality of the
problem has an effect on the computational time when the
number of training patterns is 64. Figure 4 shows how di-
mensionality of the problem has an effect on the compu-
tational time when the number of training patterns is 816.
In Fig. 3, the computational time with a CPU is shorter
than that with a GPU when the dimensionality is small.
As the dimensionality increased, the computational time
with a CPU increased drastically while that with a GPU
keeps short. In Fig. 4, the computational time with a GPU
is shorter than that with a CPU constantly. Figures 5 and
6 show that the number of patterns has an effect on the
computational time when the dimensionality of the prob-
lem is 12 or 18 respectively. In Fig. 5, the computational
time with a CPU is shorter than that with a GPU when
the number of patterns is small. However, when the num-
ber of training patterns is large, the computational time
with a GPU is shorter than that with a CPU. In Fig. 6,
the computational time with a GPU is shorter than that

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 891

with a CPU constantly. Thus the parallel computation for
generating fuzzy rules with a GPU has the effect of re-
ducing the computational time except in the case of low-
dimensionality problems with small amount of training
patterns.

Table 1. Environment of the experiments

CPU Intel Core i7 Extreme 945
Clock Frequency 3.20 GHz
Memory Size 5.8 GB
Memory Clock 667 MHz
GPU NVIDIA GeForce GTX 295
Processor Core 240
Processor Clock 1242 MHz
Memory Size 896 MB
Memory Clock 999 MHz
OS Linux x86 64
Development Environment CUDA(NVCC)2.2, GCC4.3

VI. CONCLUSIONS

In this paper, we proposed a method to parallelize
fuzzy-rule generation with a GPU using matrix multipli-
cation that is optimized for CUDA. Computational ex-
periments showed that the method reduced the compu-
tational time when the dimensionality of the problem
and/or the number of training patterns were large. For
future works, we will try to parallelize fuzzy inference
with GPU, or resolve lack of memory on GPU when the
method is applied to problems with further dimensional-
ity and/or the number of training patterns.

REFERENCES

[1] Ishibuchi H, Nakashima T and Nii M (2003), Clas-
sification and Modeling with Linguistic Information
Granules. Springer

[2] Ishibuchi H, Nozaki K, Yamamoto N, and Tanaka H
(1993), Selection of Fuzzy If-Then Rules by a Ge-
netic Method(in Japanese). The Transactions of the
Institute of Electronics, Information and Communi-
cation Engineers Vol.J76-A No.10:1465-1473

[3] NVIDIA CUDA, http://www.nvidia.com/
object/cuda home.html

[4] NVIDIA CUBLAS Library,
http://developer.download.nvidia.com/compute/
cuda/2 1/toolkit/docs/CUBLAS Library 2.1.pdf

[5] Volkov V and Demmel JW (2008), LU, QR and
Cholesky factorizations using vector capabilities of
GPUs. Technical Report No.UCB/EECS-2008-49

0

1

2

3

4

12 13 14 15 16 17 1812 15 1816 171413

Dimensionality

C
o

m
p

u
tatio

n
al tim

e [s]

4

1

3

0

2

CPU

CPU + GPU

Fig. 3. Computational time for dimensions (64 training
patterns)

0

10

20

30

40

50

60

12 13 14 15 16 17 1812 15 1816 171413

Dimensionality

C
o

m
p

u
tatio

n
al tim

e [s]

60

30

50

0

40

CPU

CPU + GPU

20

10

Fig. 4. Computational time for dimensions (816 training
patterns)

0

0.2

0.4

0.6

0.8

1 2 3 464 816512128

Number of patterns

C
o

m
p

u
tatio

n
al tim

e [s]

4

1

3

0

2

CPU

CPU + GPU

Fig. 5. Computational time for number of patterns (12
dimensionality)

0

10

20

30

40

50

60

1 2 3 464 816512128

Number of patterns

C
o

m
p

u
tatio

n
al tim

e [s]

CPU

CPU + GPU

60

30

50

0

40

20

10

Fig. 6. Computational time for number of patterns (18
dimensionality)

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 892

