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Abstract: In this paper, we present a multi-objective Discrete Particle Optimizer (DPSO) for the learning of Dynamic 

Bayesian Network (DBN) structures. The proposed method introduces a hierarchical structure consisting of DPSOs and 

a Multi-Objective Genetic Algorithm (MOGA). Groups of DPSOs find effective DBN sub-network structures and a 

group of MOGA finds whole of the DBN network structure. Through numerical simulations, the proposed method can 

find more effective DBN structures and can obtain them faster than the conventional method. 
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I. INTRODUCTION 

The Dynamic Bayesian Network (DBN) describes 

causal relations in various systems by using stochastic 

network structures, and represents them as directed 

acyclic graphs and conditional probabilities for 

transitions of each observed state variable [1]-[3]. The 

DBN is an extended model of the Bayesian Network 

(BN). As compared with the BN, the DBN can describe 

temporal causal relations of state variables. The DBN 

has been applied to speech recognition, genetic 

networks and so on. When the structural topology of a 

DBN is unknown, the learning of the DBN structure is 

needed [2][3]. In the learning, two trade-off 

characteristics must be considered. One is a 

characteristic which indicates how well the network fits 

the observed data. Another is structural complexity of 

the network. A fully-connected network can represent 

all relationships between each state variable. However, 

such a redundant network cannot adapt target model 

well, and the network size becomes extremely large. 

Therefore, it is preferred that networks should be 

constructed as simple as possible. That is, the degree of 

connectivity in the networks must be controlled in 

learning methods. Many learning methods introduce 

criteria which evaluate networks in terms of both 

probabilistic likelihood and structural complexity. 

However, they generally use a single evaluation 

function to combine these factors by a weight parameter. 

Since appropriate weight parameters depend on target 

models, it is difficult to determine a unique parameter 

value. The learning methods based on Multi-Objective 

GA (MOGA) [4] or Immune Algorithm (IA) can 

overcome this problem. However, in these algorithms, 

the learning for large scale DBN structure requires 

significantly long computation time. 

In this paper, we present a multi-objective Discrete 

Particle Optimizer (DPSO) for the learning of DBN 

structures. The proposed method introduces a 

hierarchical structure. First, the objective DBN is 

divided into plural sub-networks depending on observed 

state variables. The lower layer consists of groups of 

DPSO. The DPSO is well-known as one of the fast 

solvers for various optimization problems [5]. In the 

proposed method, each particle has binary states 

corresponding to causal relations between state 

variables in each sub-network. Each group of particles 

in the lower layer finds each effective sub-network 

structure. The higher layer consists of MOGA [4]. A 

group of individuals in the higher layer finds the whole 

of the DBN structure sharing information from the 

lower layer by migration. Evaluation values of each 

particle or individual are given as Pareto solutions for 

likelihood and complexity to obtained DBN structures. 

The hierarchical structure in the proposed method can 

reduce computation time for the learning of larger scale 

DBN structures. We evaluate both likelihood and 

complexity to obtained DBN structures, and compare 

with the conventional learning method based on MOGA 

[3]. Through numerical simulations, the proposed 

method can find more effective DBN structures and can 

obtain them faster than the conventional method. 

Generally, there exist trade-off relations between 

likelihood and complexity to DBN structures in various 

actual applications. The proposed method can also 

provide many candidate structures of DBNs. 
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II. BACK GROUND 

A Dynamic Bayesian Network (DBN) is a kind of 

probabilistic networks which represent temporal 

relationships between observed state variables. A DBN 

has three elements represented by (i) Node: observed 

state variables, (ii) Edge: dependencies between each 

node, (iii) Conditional Probability Table (CPT): degree 

of dependencies. An end point node and an origin node 

of an edge are a child node and a parent node, 

respectively. Let ][,],[1 tXtX N be N discrete state 

variables at time t . A DBN consists of (i) a prior 

network 0DBN  that specifies prior probabilities 

])0[Pr(X  and (ii) a transition network TDBN  that 

specifies transition probabilities ])[[|]1[Pr( tXtX  . 

The Joint probabilities over all the variables for time 

Tt ,2,1,0  is  
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For simplicity, this paper considers on the transition 

network only.  

 If a DBN structure is unknown, some learning methods 

by using search algorithms and evaluation criteria are 

necessary. Evolutionary computation and Bayesian 

Information Criterion (BIC) [3] have been widely used 

to the learning of DBN structures. BIC has two terms 

that indicate likelihood and complexity of networks. 

BIC is represented by the following formula.  

 

ComplexityLikelihoodBIC    (2) 

 

where  is the weight parameter which balances 

between Likelihood and Complexity. The Likelihood 

term signifies the plausibility of the network. It is 

calculated by counting occurrences within sequences. 

The likelihood is then defined as: 
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where
ii kjiN ,,

denotes the number of occurrences in 

observation data sequences such that a child node i  

has a value 
ik  and its parent node has a value 

ij .    

The Complexity term signifies the structural complexity 

of the network which is defined as: 

 


i

iXparentComplexity )(             (4) 

where )(parent is the number of parent nodes.  

  In case of using BIC, we must determine an optimum 

weight parameter between two terms. If setting of this 

parameter is improper, the resulting graph is too 

complex or sparse. However, it is difficult to determine 

a unique optimum weight beforehand, because it 

depends on target models and training data sets. To 

solve this problem, the learning method by using a 

Multi-Objective Genetic Algorithm (MOGA) has been 

proposed [3]. The method applies a Pareto ranking 

scheme to the MOGA [4]. In the Pareto ranking scheme, 

each vector is evaluated by the number of the other 

vectors which have better values about all objectives. 

Using this method, a variety of solutions about 

likelihood and complexity can be obtained.  

  However, multi-objective methods tend to need much 

iteration to convergence, compared with single-

objective methods. Since these methods acquire 

solutions for a variety of likelihood and complexity, the 

solutions are dispersed in search space. Typically, 

evaluation of the network requires enormous 

computation time which is proportional to complexity 

and amount of data. Therefore, it is desirable to reduce 

computation time to the learning convergence. 

 

III. PROPOSED METHOD 

 

In this paper, we use Discrete Particle Swarm 

Optimizers (DPSOs) [5] as a search algorithm to reduce 

computation cost to structure learning of DBNs. The 

DPSO is an optimization method that is a kind of swarm 

intelligence. In DPSO, particles efficiently search 

solutions in target problems, by updating their positions 

and velocities based on personal best solutions which 

each particle has and a global best solution which all the 

particles have. The DPSO is known as simple and fast 

algorithm. In the proposed method, a structure of a 

DBN is represented by binary variables in the DPSO. 

Particles have binary variables which denote existence 

of connections in the DBN. If a connection exists 

between a child node and a parent node, the value of the 

binary variable is 1. Otherwise, it is 0 (see Fig 1). If N  

variables can be observed, NN  strings are required.  

 

 
Fig.1  A DBN structure and binary variables in DPSO.  
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In order to solve multi-objective problems by the 

DPSO, some schemes are needed. In this paper, we use 

the existing method. We apply a multi-objective 

optimization scheme by using the Archive scheme [6]. 

The Archive has two features that are the Archive 

controller and the Grid. The Archive controller 

determines whether to save solutions into Pareto 

solutions. If the Archive has no solution with better 

evaluation values about all objectives compared with a 

selected solution, the Archive controller saves the 

selected solution into the Archive. The Grid produces 

well-distributed Pareto front. The function-space is 

divided into grids. If particles are dense in a grid, one of 

solutions in the grid is eliminated. With these features, a 

variety of solutions can be obtained. 

In addition, we apply a hierarchical structure to 

DPSOs in order to reduce computation cost. In formulas 

(3) and (4), BIC can be divided into computations for 

each child node i .This means that the learning of 

DBN structures can be split for each child node. In this 

paper, we propose a learning method by two layers. In 

the lower layer, each group of Multi-objective DPSOs 

finds each sub-network structure divided for each child 

node. That is, in the lower layer, the number of groups 

corresponds to the number of child nodes. In the higher 

layer, a group of MOGA finds the whole of the DBN 

structure. For every iteration, the lower and higher 

layers exchange respective solutions by migration. The 

overview of this hierarchical structure is shown in Fig 2. 

The proposed algorithm is described by the 

following steps: 

(step1) In the each layer, initialize particles and 

individuals. 

(step2) Evaluate particles and individuals.  

(step3) Update the positions of each particle in the 

lower layer by equation (5). 
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(step4)  Update the each Archive.  

(step5) Update the velocities of each particle in the 

lower layer by equation (6). 
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Fig.2  Overview of a hierarchical learning method. 

 

(step6) Manipulate individuals in the higher layer. 

(step7) Migrate between each layer. 

(step8) Repeat from (step2) to (step7). 

 

In migration steps, a particle which is chosen randomly 

overwrites to a part of individual whose rank is not 1.  

VI. SIMULATION RESULT 

The proposed method is applied to several 

benchmarks which have a variety of complexities and 

performances. In order to compare the proposed method 

with the conventional method, we use some benchmarks 

which were tested by the conventional method. Target 

networks (a) and (b) are shown in Fig 3. Table 1 shows 

training data sets. These nodes in the networks generate 

discrete probabilistic values according to dependencies. 

If nodes have no parents, they generate random values. 

Parameters used for the simulation are shown in Table 2.  
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Fig.3  Target networks.  

Table 1  Training data sets.  

Network Variables Links Examples Parent Links 

(a) 10 20 100 0-3 

(b) 20 40 200 0-4 

 

Table 2  Simulation parameters.  

Parameter Conventional 

Method 
Proposed 

Method 
iteration 50 50 

population 200,500 100,250 
particles - 100,250 

GA operation tournament tournament 
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Figs. 4 and 5 show the simulation results for the 

networks (a) and (b). It can be found that the proposed 

method obtains a variety of solutions which have better 

values with less iteration than the conventional method. 

A structure which has high complexity and good 

likelihood becomes complex and has extra edges. On 

the other hand, a structure which has low complexity 

and bad likelihood has many missing edges. Generally, 

there exist trade-off relations between likelihood and 

complexity to DBN structures in various actual 

applications. The proposed method can also provide 

many candidate structures of DBNs.  

 

V. CONCLUSION 

In this paper, we have proposed a hierarchical multi-

objective DPSO for the structure learning of DBNs. 

Dividing computations, the proposed method requires 

less iteration to learning convergence than the 

conventional. In addition, diversity and accuracy of 

solutions are equal or higher than the conventional 

method. Since the hierarchical structure can reduce the 

computation cost for the learning, the proposed method 

is effective in high-dimensional problems.  

 

 

 
 

 
Fig.4  Pareto solutions for the network (a). 

Upper: iteration=5. Lower: iteration=10.  

  Future problems include (1) application to other 

benchmarks, (2) evaluation for learning speed, and (3) 

consideration of appropriate group size of particles or 

individuals. 
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Fig.5  Pareto solutions for the network (b).  

Upper: iteration=10. Lower: iteration=50.  
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