
Neural network application using GPGPU

Y. Tsuchida and M. Yoshioka
Osaka Pref. Univ., Sakai, Osaka 599-8531 Japan

tsuchida@sig.cs.osakafu-u.ac.jp

Abstract

In this paper, we have proposed the speed up
method of neural network’s running especially in
learning time using GPU resource. Implementation
of the General-Purpose computing on GPU- GPGPU
became easier by the integrated development environ-
ment, CUDA distributed by NVIDIA. GPU has dozens
or a hundred arithmetic circuit, whose allocations are
controlled by CUDA. We propose the neural network
implementation using GPGPU. Local minimum, one
of the limitation of neural network, is conquered by
using some networks with different initial weight co-
efficient in parallel. On the other hand, the neural
network structure was discussed to adapt to parallel
processing. One of this implementation is applied to
the remote sensing. As a result, this implementation
is 20 times faster than CPU.

keywords GPGPU ,CUDA, Nural Network

1 Introduction

Recently, graphic boards have higher performance
with development of 3DCG and movie processing than
CPU, and widely used with progress of computer en-
tertainment. In this paper, we have proposed that the
neural network’s running time become speed up espe-
cially in learning time using GPU resource. Implemen-
tation of the General-Purpose computing on GPU-
GPGPU became easier by the integrated development
environment, CUDA distributed by NVIDIA. GPU
has dozens or a hundred arithmetic circuit, whose al-
locations are controlled by CUDA. We propose the
neural network implementation using GPGPU. Local
minimum, one of the limitation of neural network, is
conquered by using some networks with different ini-
tial weight coefficient in parallel. The performance de-
pends on the allocation of threads, because the CUDA
has hierarchical framework to treat many threads.
Second, CUDA has many types of memories too, es-
pecially, how to treat the shared memory, one of the
on-chip memory, influences performances. Therefore

the neural network structure was discussed to adapt
to parallel processing.

2 CUDA

CUDA, Compute Unified Device Architecture, is a
software development kit distributed free by NVIDIA.
By employing a supported graphics board, the par-
allel computing architecture is used easily. In com-
puting using CUDA, the threads are stored in hier-
archy streucture. The grid exist as highest hierarchy
in GPU, in the grid there are 65,535 x 65,532 blocks,
and the threads are managed by three dimensions in
the block. Some types of memories are implemented
in CUDA, and, among them, the shared memory ex-
ists in each blocks. This memory is implemented as
on-chip memory, therefore the access to the memory
is faster than any other memories. However this mem-
ory is used in threads only. This memory is “shared”
among threads existing in a block.

3 The parallelization for the whole
neural network

At first, one neural network is implemented as one
computational thread of parallel computing, and these
threads have each different initial weight coefficients.

In the CUDA, it must be configured which hierar-
chy the threads are assigned to. Therefore, when N
networks are executed, the number of thread in block
is expressed by m and the number of blocks in grid is
N/m, which m and N are integer. The relationship
between m and processing time are evaluated firstly.

Table 1 shows the specification of GeForce GTX480
which is used in this research. Test network has 2 neu-
rons in input layer, 3 neurons in hidden layer, and the
1 neuron in output layer. There are 4 lerning pat-
tarns, and the learning is repeated by 2200 steps at
each pattern. This routine is employed as one thread,
and the time of processing for N threads are measured

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 870

Table 1: GeForce GTX480
Number of cores 480
Global Memory 1.5GB

Constant Memory 64KB
Shared Memory 48KB/block

Clock rate 1.40GHz
Maximum threads 1024/block

by changing N and m. Figure refmap shows the mea-
suring result, where m = N represents all threads are
assigned in one block. Because of the limited number
of arithmetic units, the process time is proportional to
N upward N = 40 in m = 1, and because of the time
of memory access, the performance is down in m = N
too.

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120

m=1
m=5
m=20
m=N

P
r
o
c
e
s
s
i
n
g

T
i
m
e
(
m
s
e
c
)

m:allocate in block

The number of network N

Figure 1: Processing time for whole network thread

One of the goal of the parallelization, the calcula-
tion time became flat independent of N, is achieved
rid of m = 1. From this result, the time is depend on
m, however the influence is small.

The problem of m is influenced to the shared mem-
ory on implementation, because this memory size uses
m times, and this is allocated fixed size in each block.
Because shared memory is less than grobal memory,
m must be decided by the scale of the network.

4 Parallelization of the inner structure
of network

In previous section, one entire network is imple-
mented as one thread, therefore we propose that the
network structure is broken up and scattered on GPU.
Figure 2 shows the model of the neural network. In the
network, some neurons exist in a layer, these neurons
can be evaluated in same time.

However, the inputs of the neurons are previ-
ous layer’s results, therefore the momentary pause is

-

-

-

x0

x1

xi

xl

y0

y1

yj

ym

z1

zk

zn

e1

ek

en

-

d1 dk dn

Input Layer Hidden Layer Output Layer

Supervisor

I
n
p
u
t

S
i
g
n
a
l
s

Threshold Value

O
u
t
p
u
t

S
i
g
n
a
l
s

Nonexistent Node

Column

Row

blocking signal

P
a
r
a
l
l
e
l
i
z
e

Figure 2: The neural network model

needed until the output from the previous layer be-
come complete. The block signals are employed in
front of each layers, which show ’stop’ until the all
neurons have been calculated completely. It is neces-
sary to calulate one network, The number of threads
which is necessary to calculate one network is maxi-
mum numbers of neurons per layers, nmax . Note that
the processing waits for the other when it comes in the
layer where the neuron is nonexistent.

The phase of foreword propagation is independent
in calculating other patterns too, so p patterns loop
can be calculated in parallel. In the phase of the back
propagation, more flags are needed to calculate in par-
allel, these are hoisted to protect the one neuron from
other propagation.

The sizes of grids and blocks are expressed by three
dimensions, where z-direction of grid is 1. In the ex-
periment, the grid allocate (N/m, p, 1) blocks, and the
block allocate (m,nmax, 1), and the processing time
was measured. The sample network is same as previ-
ous section, therefore the p = 4, nmax = 3. Figure 3
shows the result.

p
r
o
c
e
s
s
i
n
g

t
i
m
e
(
m
s
e
c
)

The number of network N

 0

 100

 200

 300

 400

 500

 600

 20 40 60 80 100 120

m=1

m=4

m=8

m=20

m=N

Figure 3: Processing time for scatterd network

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 871

Table 2: CPU(host machine specification)
CPU AMD Phenom 9600

Frequency 2.31GHz
Memory 3.8GByte

Operating System Windows XP sp2

As a result,the time is proportional to N in early
stage when m = 1. The tendency of the total plot
resembles a previous section, then the influence of an
calculation cost by m on hardware is small. The result
was speed-up only 2.4 times in comparison with the
foregoing chapter. So, the further improvement of the
block signal and flags is necessary.

5 Comparison with the CPU

This suggestion was compared with a CPU. Table
2 shows the specification of a comparison CPU.

The experiment is evaluated in processing time by
changing the number of hidden layer and pattern.

Test network of this section has 3 neurons in input
layer and the 3 neuron in output layer. The learning is
repeated by 2200 steps at each pattern. The number
of network N = 40 and the network in block m = 4 is
assigned. The number of hidden layer is selected from
3, 6, 9 and the pattern is chosen from 5, 10, 15, 20.

Table 3 shows the processing time of the GPU, and
table 4 show the ratio of CPU to GPU. The columns
is the number of pattern, and the row is the number
of hidden layer.

Table 3: Processing time for patterns and hidden lay-
ers by GPU

5 10 15 20
3 65.34 107.92 161.19 246.22
6 69.47 110.72 159.07 249.67
9 111.75 218.38 326.04 436.61
12 112.53 214.67 318.54 436.96

The number of pattern

T
h
e
n
u
m
b
er

o
f

h
id
d
en

la
ye
r

Compared with the CPU, 22.4 times in average is
faster. When the number of hidden layer is 3 and 6 ,
the tiem of the same number of pattern is equivalent.
And when the number of hidden layer is 9 and 12, the
time is equivalent too.

This result shows that the usage of the block influ-
ences the performance.

Table 4: The ratio of CPU to GPU (CPU/GPU)

The number of pattern

T
h
e
n
u
m
b
er

o
f

h
id
d
en

la
ye
r

5 10 15 20
3 15.33 17.53 17.16 14.79
6 21.57 26.19 27.73 23.39
9 18.06 18.08 18.01 18.14
12 22.37 23.11 23.20 22.43

6 Conclusion

We proposed the speed-up method of neural net-
work learning by using GPGPU. The GPGPU has the
hierarchical structure to store the threads, the perfor-
mance is influenced by assigning hierarchy. At first,
the learning time of some networks in parallel was
measured to show the effect of the hierarchy.

The neurons of each layer in network are processed
in parallel, and patterns are processed in parallel too.
This method shows the 2.4 times faster than the first
method, and compared with CPU, the processing time
is 22.4 times faster.

This method will be applied for home use. The
method is applied with the graphics or motion pat-
tern recognition easily, because GPU is the hardware
for graphic processing. This goal of this method ap-
plication is usign for the speech recognition.

In the other hand, this method is used in remote
sensing field. The goal in the future is that the new
learning algorithm adopted on GPGPU is created.

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 872

