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Abstract: We analyze the dynamics of the non-linear oscillatory field composed of Radial Isochron Clocks
(RICs) or Stuart-Landau (SL) oscillators, which are the simplest dynamical systems that have one stable
limit cycle around one unstable equilibrium. According to our computer simulation, the non-linear oscillatory
field with two kinds of Mexican-hat-type connection had the function of several peak ditection of an external
input by the localized oscillatory excitation areas. Moreover, this non-linear oscillatory field could also realize
in-phase phase-locking within each localized oscillatory excitation area, but maximize the phase difference
between different localized oscillatory excitation areas. As Amari (1977) model of the nerve field provided
mathematical base for the self-organizing map (SOM) algorithm, the non-linear oscillatory field is expected
to provides theoritical base for the oscillatory SOM algorithm.
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1 Introduction

Many 1970’s experimental results suggested that
feature-extracting cells are self-organized in visual
cortex through postnatal sensory experience [1, 2].
Hirsch and Spinelli (1970), for example, observed
such self-organization in the visual cortical cells of
young kitten [1].

In response to this, a lot of neural network mod-
els were proposed at the time to describe this phe-
nomenon. Malsburg (1973) proposed the earliest
model which explained the mechanism of self-organization
of the visual cortex [3]. Amari and Takeuchi (1978)
formulated the Malsburg model in the mathmati-
cally simple form [4]. In this model, they adopted
Amari (1977) model of the nerve field, which had
been shown to allow stable localized excitation ar-
eas [5]. This stable excitation pattern in the nerve
field provides base for neighborhood learning used
in Malsburg model and Kohonen’s Self-Organizing
Map (SOM) algorithm [6]. SOM is one of the sim-
plest learning model of the cerebral cortex. Amari
expressed the property of peak detection of the func-
tion through the dynamics of the nerve field with the
Mexican-hat-type connection pattern, while Koho-
nen built that of peak detection to the algorithm
directly in the SOM.

Meanwhile, recent studies found that the sign
and magnitude of synaptic plasticity depend criti-
cally on the precise timing of pre- and postsynaptic
firing. This phenomenon is called spike timing de-
pendent plasticity (STDP) [7]. Moreover, there is

a hypothesis that the property binding should be
represented by phase-locking among neuronal oscil-
latory firing, called synchronous firing hypothesis.
Eckhorn et al. (1988) and Gray et al. (1989) dis-
covered synchronous periodic firing of neurons in
the visual cortex of the monkey and that of the cat
[8, 9].

Regarding periodic neuronal firing as oscillation,
and synchronous firing as in-phase phase-locked os-
cillation, we extend Amari model of the nerve field
to the oscillatory field. Kuramoto (1982) first pro-
posed the oscillatory field [10]. The difference of
our model from the preceding models such as Ku-
ramoto model is that oscillation occurs in local area
in the oscillatory field. We call this excitation pat-
tern localized oscillatory excitation [13]. In this
paper, we study the mechanism of formation of lo-
calized oscillatory excitation areas in the oscillatory
field. To this end, we consider a non-linear os-
cillatory field composed of Radial Isochron Clocks
(RIC) or Stuart-Landau (SL) oscillators, which are
the simplest dynamical systems that have one stable
limit cycle around one unstable equilibrium [11, 12].

Our computer simulation showed that the non-
linear oscillatory field with two kinds of Mexican-
hat-type connection had the function of several peak
ditection of an external input by the localized oscil-
latory excitation areas, and could also realize in-
phase phase-locking within each localized oscilla-
tory excitation area, but maximize the phase dif-
ference between different localized oscillatory exci-
tation areas.
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This non-linear oscillatory field is expected to
provide theoritical base for the oscillatory SOM al-
gorithm, as Amari (1977) model of the nerve field
provided mathematical base for the SOM algorithm
[14].

2 Model

2.1 RIC (SL Oscillator)

RICs (SL oscillators) are known to be one of the
simplest dynamical systems which have one stable
limit cycle around one unstable equilibrium [11, 12].
The dynamics of RICs are written in polar form as
below.

dr

dt
= r(1− r2) (1)

dθ

dt
= 1 (2)

As shown in Fig.1, any orbit beginning with r > 0
approaches the stable limit cycle (r = 1) as t in-
creases. According to the equation (2), the behavior
of the phase θ does not depend on the amplitude r.

2.2 Non-Linear Oscillatory Field

Let us consider a non-linear oscillatory field con-
sisting of RICs (SL oscillators) as shown in the fol-
lowing equations.

dr(x)
dt

= r(x)(I1(x)− r(x)2) + δ (3)

dθ(x)
dt

= 1 + I2(x) (4)

I1(x) =
∑

ξ

w1(ξ − x)r(ξ) (5)

I2(x) =
∑

ξ

w2(ξ − x)r(ξ) sin(θ(ξ)− θ(x)) (6)

w1(x) = (1− 2(
x

σ1
)2) exp{−(

x

σ1
)2} (7)

w2(x) = exp{−(
x

σ2
)2} − C (8)

Fig.2 illustrates our model of the non-linear oscil-
latory field. One osillator is connected with all the
other oscillators through two kinds of Mexican-hat-
type connection, w1 and w2. To facilitate visualiza-
tion, we assume in this section that the oscillators

θ
r

1-1

-1

1

Fig. 1: The structure of a RIC (SL oscillator).

Fig. 2: Our model of the non-linear oscillatory field.

are arranged in one dimension. Moreover, only the
connections from the oscillator in the center to the
others is discribed in Fig.2, but actually, the other
oscillators also have similar connection.

The oscillator located at place x has information
of the amplitude r(x) and the phase θ(x). the pos-
itive value of the amplitude r(x) > 0 represents
neuronal firing, and r(x) = 0 represents that the
neuron is not firing. The small positive constant δ
deviate the amplitude r(x) from an unstable equi-
librium (r(x) = 0).

The input I1(x) effects on the amplitude r(x)
of the oscillator. One localized oscillatory excita-
tion area exists over a range of the positive value of
I1(x) > 0. On the other hand, the input I2(x) ef-
fects the phase θ(x). The positive value of I2(x) > 0
increases the phase velocity.

As shown in Fig.3, two kinds of Mexican-hat-type
connection w1(ξ − x) and w2(ξ − x) depend on the
distance from one oscillator at place x to another
oscillator at place ξ. Although both w1 and w2

are Mexican-hat-type connection, these two types
of effect on the distant unit are different. While
w1 has no effect on the distant unit as w1(∞) = 0,
w2 has the negative effect on the distant unit as
w2(∞) = −C, in order to maximize the phase differ-
ence between the distant units. For in-phase phase-
locking within one localized oscillatory excitation
area, the range of positive effect of w2(ξ − x) > 0
must be wider than that of the localized oscillatory
excitation area, I1(x) > 0, namely, σ1 < σ2.

This non-linear oscillatory field allows one or sev-
eral localized oscillatory excitation areas, as described
in the next chapter.
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Fig. 3: Two kinds of Mexican-hat-type connection.

3 Computer Simulation

3.1 Settings

In this chapter, we assume two-dimensional field
x = (x, y), x′ = (ξ, η). Hense, the mathematical ex-
pression x′−x represents ‖x′−x‖. The non-linear
oscillatory field consists of 40 × 50 oscillators, and
the distance between one oscillator and the neigh-
boring oscillator is defined as 0.05.

The winner of the ordinary dot-product SOM has
the weight vectors which maximize the dot-product
between the input [6]. In other words, the ordinary
SOM algorithm has the ability of the peak detec-
tion. Amari (1977) model justifies the ability of the
SOM algorithm by the dynamics of the nerve field
[5].

Recently, oscillatory SOMs, the extended version
of the SOMs by the oscillators, have been proposed
[14]. The oscillatory SOMs allow the several win-
ners in the output layer. In other words, the oscil-
latory SOMs detect the several maximal points of
the function, or the dot-product between the input
vectors and the weight vectors. The ability of the
oscillatory SOMs to detect the several peaks of func-
tion is also required to be justified by the dynamics
of the oscillatory field.

Therefore, we carried out the computer simula-
tion of peak detection of function, using our model
of the non-linear oscillatory field.

As shown in Fig.4, the constant extranal input
Iex(x) which had three maximal points was added
to I1(x) in the following equation (9). The external
input was given by the equation (10), and the three
maximal points were located at place x1 = (7, 20),
x2 = (20, 40), x3 = (30, 10).

I1(x) =
∑

x′
w1(x′ − x)r(x′) + Iex(x) (9)
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Fig. 4: The external input Iex(x) on the computer
simulation.

Table 1: Parameters on the computer simulation

δ σ1 σ2 C σ
0.001 0.25 0.5 0.5 0.5

Iex(x) = exp(−‖x− x1‖2
σ2

)

+ exp(−‖x− x2‖2
σ2

)

+ exp(−‖x− x3‖2
σ2

) (10)

The simulation was carried out by using the Runge-
Kutta method of which the size of time step was
0.005. Each oscillator was set the initial value of
the amplitude to 0, and set that of the phase to the
uniform pseudorandom number from 0 to 1. Each
parameter was given as Table 1.

3.2 Results

Fig.5 illustrates the non-linear oscillatory field
when the external input which has the three local
maximal points is given. The circle represents the
activated oscillator r(x) > 0. The direction of the
radus represents the phase θ(x) of the oscillator,
or the timig of neuronal firing. Three framed rect-
angles denote the maximal points of the external
input.

As shown in Fig.5, the non-linear oscillatory field
kept stably three localized oscillatory excitation ar-
eas around the same number of maximal points of
the external input.Therefore, the non-linear oscil-
latory field had the ability of detection of several

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11), 
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 856



Fig. 5: The non-linear oscillatory field given the ex-
ternal input which had three maximal points. Three
localized oscillatory excitation areas were kept sta-
bly around the same number of maximal points.

peaks from the external input by the localized os-
cillatory areas.

In this case, the oscillatory field entrained in-
phase within each localized oscillatory excitation
area, and entrained the phase difference 2π/3 be-
tween the different localized oscillatory excitation
areas.

4 Conclusion

We analyzed the dynamics of the non-linear os-
cillatory field consisting of RICs, or SL oscillators.

Our computer simulation showed that the non-
linear oscillatory field with two kinds of Mexican-
hat-type connection could keep three localized os-
cillatory excitation areas stably around the same
number of maximal points of the external input.
Thus, our model has the ability of peak detection
of the function, which Amari model also has. More-
over, the non-linear oscillatori field could also re-
alize in-phase phase-locking within each localized
oscillatory excitation area, but maximize the phase
difference between different localized oscillatory ex-
citation areas.

This non-linear oscillatory field provides theo-
ritical base for the oscillatory SOM algorithm, as
Amari (1977) model of the nerve field provided math-
ematical base for the SOM algorithm [14].
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