
Temporal difference approach in linearly-solvable Markov decision

problems

 Burdelis, M.A.P. and Ikeda, K.

Nara Institute of Science and Technology, Grad. School of Information Science,

A606, 8916-5 Takayama, Ikoma, NARA, 630-0192, Japan

 (Tel : 81-743-72-5984; Fax : 81-743-72-5989)

(mauricio-b@is.naist.jp)

Abstract: Todorov has recently introduced a class of linearly-solvable MDPs (LSMDPs) which greatly simplifies

reinforcement learning. By attending some specific conditions, the problem of choosing optimal actions (sequential

decision making) can become linear, and then be solved in closed-form. A similar method to temporal difference

learning (TD learning) for this class of MDPs has also been introduced, and is called Z-learning. In this work we

present the results of simulations using Z-learning to solve a navigation problem of a virtual agent in a grid world, in

which physical properties of the system (Newtonian mechanics) were introduced in the MDP model in the definition of

the passive dynamics probability distribution, which is crucial in the theory. Those MDPs were solved both in closed-

form and using Z-learning. In all experiments, the approximation errors of Z-learning consistently decreased with the

increase in the number of simulation steps.

Keywords: Linear Bellman Equation; Reinforcement Learning.

I. INTRODUCTION

The Reinforcement learning (RL) approach to

Machine Learning is a technique to learn how to make

decisions in order to achieve a desired goal. In RL, the

model does not include the presence of a supervisor, and

the agent must learn by trial and error, interacting with

the environment and observing a reward (or cost) signal

[1]. Examples of possible applications of RL include:

playing board games like chess, checkers or “tic-tac-

toe”; and a nervous system generating muscle

activations to maximize movement performance [2].

RL problems are usually defined on a discrete-time

Markov decision process (MDP) with stochastic

dynamics. Recent work [3] has presented a class of

linearly-solvable MDPs, which greatly simplify the

solution of reinforcement learning problems. Z-learning

is a temporal-difference approach to the RL problem,

which takes advantage of this class of MDPs, and

presents faster convergence than traditional RL methods

(e.g. Q-learning) [3] [2]. The present work has the

motivation of including Newtonian mechanics effects

(inertia and collisions) in the passive dynamics

probability distribution of the linearly-solvable MDP

used for Z-learning.

II. LINEARLY-SOLVABLE MARKOV

DECISION PROCESSES (LSMDP)

Let us denote the state of the environment in a

discrete time instant t as xt. If this state signal retains all

relevant information for the decision, it is said to have

the “Markov property”, and

...),|Pr()|Pr(111 −++ = ttttt xxxxx . (1)

This means that the history of past states has no

influence on the probability of the next state. A

reinforcement learning task that satisfies the Markov

property is called a Markov decision process (MDP) [1]

[4].

A particular finite MDP is defined by: a set of

possible states X, a set of possible actions U, state

transition probabilities p(xt+1|xt, ut) (which mean the

probability that the next state is state xt+1 when the

current state is state xt and action ut is taken), and

immediate cost l(xt+1|xt, ut) for being at state xt, taking

action ut and having a transition to state xt+1.

The reinforcement learning agent’s sole objective is

to minimize the total accumulated cost it receives in the

long run [1] [2]. The “cost-to-go” function (or “value”

function) of a state (denoted v(x)) is defined as the

expected total cost the agent accumulates starting from

that state, and following the optimal policy thereafter.

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 808

The cost-to-go (or “value”) function is the only

solution to its Bellman equation [1] (refer to section III

for details). This solution can be obtained by using

Dynamic Programming (DP), but this can be time-

consuming due to the explosion of unknown variables.

Recent work [3] has introduced a class of MDPs

which greatly simplifies reinforcement learning. By

attending some specific conditions, the Bellman

equation of the MDP becomes linear, and its solution

can be obtained in closed-form. The conditions are as

follows [2]:

In the original MDP framework, the agent specifies

discrete actions u ∈ U. The probabilities of state

transitions starting from the current state x ∈ X depend

on the action u taken at that state. In other words, the

probability of transition from a state x ∈ X to a state

x’ ∈ X is given by p(x’|x, u).

In LSMDPs, however, the agent can specify the

transition probabilities directly. In other words, there are

no discrete actions u nor the set of actions U. Instead,

the agent can directly specify the probability of

transition from the current state x ∈ X to any possible

future state x’ ∈ X, without the existence of discrete

actions. These probabilities will be represented by using

the letter u and therefore p(x’|x, u) becomes u(x’|x) [2].

Another necessary condition is the definition of a

probability distribution called “passive dynamics”,

denoted pd(x’|x), which corresponds to the behavior of

the system in the absence of controls [2].

The total cost incurred in a state transition will be

defined as follows [2]:

())|(||)|()(),(xpxuKLxquxl d ⋅⋅+= (2)

Where q(x) is called “state-cost” (which depends

only on the state, therefore representing how

undesirable a state is) and

()

≡⋅⋅ ⋅

)|'(

)|'(
log)|(||)|()|(~'

xxp

xxu
ExpxuKL

d

xux
 (3)

is the Kullback–Leibler (KL) divergence between

the controlled state transition distribution and the

passive dynamics. This measures how “different” these

distributions are from one another, and is called “action

cost” [2].

The last condition is that u(x’|x)=0 when pd(x’|x)=0,

in order to keep the KL divergence well-defined and

avoid impossible state transitions [2].

III. Z-LEARNING

When the passive dynamics distribution is known,

as well as all the states and their respective state costs,

then the problem of obtaining the cost-to-go function

v(x) can be solved using dynamic programming and the

Bellman equation. The Bellman equation expresses the

relationship between the cost-to-go of state and the

expected cost-to-go of the next state:

{ })]'([),(min)(),|(~' xvEuxlxv uxpx
u

⋅+= (4)

where

∑≡⋅

'

),|(~')'(),|'()]'([
x

uxpx xvuxxpxvE . (5)

In LSMDPs, the Bellman equation can be expressed

as [2]:

()∑−=

'

)()'()|'()(
x

xq xzxxpexz , (6)

where

())()(xvexz −≡ (7)

is called the “desirability function” of a state. This

Bellman equation (6) is linear in z.

Equation (6) can be written in vector notation, by

enumerating the states from 1 to n, representing z(x) and

q(x) as column vectors z and q, and representing p(x’|x)

as a matrix P (where the row-index corresponds to x and

the column-index corresponds to x’) [2]. By partitioning

z, q and P according to terminal and non-terminal states

(using index N for non-terminal and T for terminal),

equation (6) becomes [2]:

)exp()))(exp((TNTNNNN qqdiag −=− PzP (8)

where “diag” transforms vectors into diagonal

matrices. By acknowledging that v(x) = q(x) at terminal

states, the unknown zN (vector of desirabilities at the

non-terminal states) can be calculated by using matrix

factorization or an iterative linear solver [2].

When the state costs and passive dynamics are not

known, then simulations must be made in order to solve

the problem of estimating the cost-to-go function by

using reinforcement learning.

Z-learning is a temporal-difference-like method

which takes advantage of the linear class of MDPs to

diag

KL

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 809

achieve faster convergence then traditional

reinforcement learning methods [2].

As in traditional TD learning methods, initial

estimates are constantly updated until convergence is

obtained. The Z-learning update formula is as follows

[2]:

)()exp()()1()(1+−+−← tcurtttcurttupd xzqxzxz ηη (9)

Where zupd(xt) is the updated estimate of z(xt), zcur(xt)

is the current estimate of z(xt), zcur(xt+1) is the current

estimate of z(xt+1), qt is the state cost of state xt, and ηt is

a learning rate which decreases over time.

IV. MODELING NEWTONIAN MECHANICS

EFFECTS

In the present work two Newtonian mechanics

effects were modeled in the passive dynamics

probability distribution (which is usually defined simply

as “random walk”): inertia and collisions. These

Newtonian mechanics effects were modeled and

simulated in a 2-dimensional “grid-world” (10x10 size,

with obstacles - Fig.1). The goal of the agent is to find

the goal position, while avoiding the obstacles on the

path.

Initially, a few difficulties have emerged from

modeling the state signal in the grid world as the

position of the learning agent. In order to model inertia,

it is necessary to know the current and the previous

position of the agent. If the state signal contains only the

information on the current position, then it is necessary

to know the current and the previous state in order to

model the passive dynamics, and this would violate the

“Markov property” (1).

Also, in order to model collisions with obstacles and

walls, the agent would originally need to be able to take

discrete actions of movement in the direction of the wall

or obstacle, and this would violate one of the necessary

conditions to have a LSMDP.

In order to overcome these two difficulties, the state

signal was modeled to include information of position

pairs: the current and the previous position.

A simple model of inertia was created by assigning a

pre-defined “highest probability” value (denoted hp) to

the passive dynamics probability of the next position in

the current trajectory of the agent. The remaining

adjacent non-obstacle positions equally share the

probability (1-hp) (Fig. 2).

Fig.1. A two-dimensional “grid world” (size 10x10)

Fig.2. Modeling inertia (with hp = 0.9)

Two types of walls and obstacles were considered in

order to model collisions: reflexive walls and obstacles

(which reflect the normal components of impacts); and

absorptive walls and obstacles (which absorb the normal

components of impacts). The passive dynamics

probability distribution is updated based on the current

position and the previous position of the agent. When

the agent’s position is adjacent to a wall or obstacle, and

the most probable trajectory (driven by inertia) is in the

direction of the wall or obstacle, then the position that

receives the highest probability value hp is the most

likely position after a collision with this wall or obstacle,

and the remaining possible positions share the

remaining (1-hp), as shown in Fig.3

Fig.3. Collisions with a reflexive and an absorptive wall

(with hp = 0.9)

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 810

V. COMPUTATIONAL EXPERIMENTS

The grid world shown in Fig.1 was solved

analytically (using equation (8) [2]) and also using Z-

learning. The state cost of every state (except for the

goal state) is 1 (in order to penalize the agent for

producing long trajectories) and 0 only at the goal state.

Both reflexive and absorptive walls and obstacles were

considered. In Z-learning, three different policies were

used: policy equal to the passive dynamics; random

walk policy; and ε-greedy policy (with ε=0.2). When

the applied policy differs from the passive dynamics

distribution, importance sampling is required [2]: the

last term in equation (9) needs to be multiplied by

pd(xt+1|xt)/û(xt+1|xt), where û is the applied policy – in

this case it is necessary to know the passive dynamics

distribution pd.

In order to measure the quality of the approximation

of the cost-to-go function estimates produced by Z-

learning, the approximation error (comparing the

estimates with the correct values obtained in closed-

form) was calculated using the formula:

∑∑
==

−=
N

i

i

N

i

ii xvxvxvError
1

*

1

*)()()((10)

where xi represents the i
th

 state; N is the total number

of states; v(x) is the current approximation of the cost-

to-go function (obtained by Z-learning) and v*(x) is the

optimal cost-to-go function obtained analytically.

The results of the simulations can be seen in Fig.5

and Fig.6. In all experiments the learning rate ηt decays

obeying the formula ηt=c/(c+t) where t is the time step

and c is a constant which was different for each case.

The results for both models (the model with absorptive

walls and obstacles; and the model with reflexive walls

and obstacles) are very similar, indicating that the

framework is considerably robust. When sampling from

the passive dynamics, the error takes more steps to

converge, because the inclusion of inertia in the passive

dynamics makes this distribution less exploratory than

random walk. The other two policies (random walk and

ε-greedy) presented faster convergence, but their use

requires access to pd. In all cases the Z-learning

approximation errors consistently decrease as the

number of simulation steps increases.

Fig.5. Z-learning approximation errors

(absorptive walls and obstacles)

Fig.6. Z-learning approximation errors

(reflexive walls and obstacles)

VI. CONCLUSION

The flexible framework of linearly-solvable MDPs

allowed for simple models of Newtonian mechanics

effects to be simulated in the passive dynamics

probability distribution. The cost-to-go function of the

resulting model was obtained both in closed-form and

using Z-learning. The Z-learning algorithm was able to

approximate the correct cost-to-go function, presenting

errors which consistently decreased with the increase in

the number of simulation steps.

REFERENCES

[1] Sutton R S, Barto A G (1998). Reinforcement

learning: An introduction. MIT Press.

[2] Todorov E. (2009) Efficient computation of optimal

actions. Proc Natl Acad Sci USA 106:11478–11483.

[3] Todorov E (2006) Linearly-solvable Markov

decision problems. Adv Neural Informatin Proc Syst

19:1369–1376.

[4] Iwata K, Ikeda K, Sakai H (2006). The asymptotic

equipartition property in reinforcement learning and its

relation to return maximization. Neural Networks 19(1),

62–75.

Absorptive walls and obstacles

Reflexive walls and obstacles

The Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB 16th ’11),
B-Con Plaza, Beppu,Oita, Japan, January 27-29, 2011

©ISAROB 2011 811

