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Abstract: Todorov has recently introduced a class of linearly-solvable MDPs (LSMDPs) which greatly simplifies 

reinforcement learning. By attending some specific conditions, the problem of choosing optimal actions (sequential 

decision making) can become linear, and then be solved in closed-form. A similar method to temporal difference 

learning (TD learning) for this class of MDPs has also been introduced, and is called Z-learning. In this work we 

present the results of simulations using Z-learning to solve a navigation problem of a virtual agent in a grid world, in 

which physical properties of the system (Newtonian mechanics) were introduced in the MDP model in the definition of 

the passive dynamics probability distribution, which is crucial in the theory. Those MDPs were solved both in closed-

form and using Z-learning. In all experiments, the approximation errors of Z-learning consistently decreased with the 

increase in the number of simulation steps. 
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I. INTRODUCTION 

The Reinforcement learning (RL) approach to 

Machine Learning is a technique to learn how to make 

decisions in order to achieve a desired goal. In RL, the 

model does not include the presence of a supervisor, and 

the agent must learn by trial and error, interacting with 

the environment and observing a reward (or cost) signal 

[1]. Examples of possible applications of RL include: 

playing board games like chess, checkers or “tic-tac-

toe”; and a nervous system generating muscle 

activations to maximize movement performance [2].  

RL problems are usually defined on a discrete-time 

Markov decision process (MDP) with stochastic 

dynamics. Recent work [3] has presented a class of 

linearly-solvable MDPs, which greatly simplify the 

solution of reinforcement learning problems. Z-learning 

is a temporal-difference approach to the RL problem, 

which takes advantage of this class of MDPs, and 

presents faster convergence than traditional RL methods 

(e.g. Q-learning) [3] [2]. The present work has the 

motivation of including Newtonian mechanics effects 

(inertia and collisions) in the passive dynamics 

probability distribution of the linearly-solvable MDP 

used for Z-learning. 

  

II. LINEARLY-SOLVABLE MARKOV 

DECISION PROCESSES (LSMDP) 

Let us denote the state of the environment in a 

discrete time instant t as xt. If this state signal retains all 

relevant information for the decision, it is said to have 

the “Markov property”, and 

 

...),|Pr()|Pr( 111 −++ = ttttt xxxxx .       (1) 

 

This means that the history of past states has no 

influence on the probability of the next state. A 

reinforcement learning task that satisfies the Markov 

property is called a Markov decision process (MDP) [1] 

[4].  

A particular finite MDP is defined by: a set of 

possible states X, a set of possible actions U, state 

transition probabilities p(xt+1|xt, ut) (which mean the 

probability that the next state is state xt+1 when the 

current state is state xt and action ut is taken), and 

immediate cost l(xt+1|xt, ut) for being at state xt, taking 

action ut and having a transition to state xt+1.  

The reinforcement learning agent’s sole objective is 

to minimize the total accumulated cost it receives in the 

long run [1] [2]. The “cost-to-go” function (or “value” 

function) of a state (denoted v(x)) is defined as the 

expected total cost the agent accumulates starting from 

that state, and following the optimal policy thereafter. 
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The cost-to-go (or “value”) function is the only 

solution to its Bellman equation [1] (refer to section III 

for details). This solution can be obtained by using 

Dynamic Programming (DP), but this can be time-

consuming due to the explosion of unknown variables. 

Recent work [3] has introduced a class of MDPs 

which greatly simplifies reinforcement learning. By 

attending some specific conditions, the Bellman 

equation of the MDP becomes linear, and its solution 

can be obtained in closed-form. The conditions are as 

follows [2]: 

In the original MDP framework, the agent specifies 

discrete actions u ∈ U. The probabilities of state 

transitions starting from the current state x ∈ X depend 

on the action u taken at that state. In other words, the 

probability of transition from a state x ∈ X to a state   

x’ ∈ X is given by p(x’|x, u). 

In LSMDPs, however, the agent can specify the 

transition probabilities directly. In other words, there are 

no discrete actions u nor the set of actions U. Instead, 

the agent can directly specify the probability of 

transition from the current state x ∈ X to any possible 

future state x’ ∈ X, without the existence of discrete 

actions. These probabilities will be represented by using 

the letter u and therefore p(x’|x, u) becomes u(x’|x) [2]. 

Another necessary condition is the definition of a 

probability distribution called “passive dynamics”, 

denoted pd(x’|x), which corresponds to the behavior of 

the system in the absence of controls [2]. 

The total cost incurred in a state transition will be 

defined as follows [2]: 
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Where q(x) is called “state-cost” (which depends 

only on the state, therefore representing how 

undesirable a state is) and 
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is the Kullback–Leibler (KL) divergence between 

the controlled state transition distribution and the 

passive dynamics. This measures how “different” these 

distributions are from one another, and is called “action 

cost” [2]. 

The last condition is that u(x’|x)=0 when pd(x’|x)=0, 

in order to keep the KL divergence well-defined and 

avoid impossible state transitions [2]. 

III. Z-LEARNING 

When the passive dynamics distribution is known, 

as well as all the states and their respective state costs, 

then the problem of obtaining the cost-to-go function 

v(x) can be solved using dynamic programming and the 

Bellman equation. The Bellman equation expresses the 

relationship between the cost-to-go of state and the 

expected cost-to-go of the next state: 
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where 
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In LSMDPs, the Bellman equation can be expressed 

as [2]: 
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where 
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is called the “desirability function” of a state. This 

Bellman equation (6) is linear in z. 

Equation (6) can be written in vector notation, by 

enumerating the states from 1 to n, representing z(x) and 

q(x) as column vectors z and q, and representing p(x’|x) 

as a matrix P (where the row-index corresponds to x and 

the column-index corresponds to x’) [2]. By partitioning 

z, q and P according to terminal and non-terminal states 

(using index N for non-terminal and T for terminal), 

equation (6) becomes [2]: 

 

)exp()))(exp(( TNTNNNN qqdiag −=− PzP  (8) 

 

where “diag” transforms vectors into diagonal 

matrices. By acknowledging that v(x) = q(x) at terminal 

states, the unknown zN (vector of desirabilities at the 

non-terminal states) can be calculated by using matrix 

factorization or an iterative linear solver [2]. 

When the state costs and passive dynamics are not 

known, then simulations must be made in order to solve 

the problem of estimating the cost-to-go function by 

using reinforcement learning. 

Z-learning is a temporal-difference-like method 

which takes advantage of the linear class of MDPs to 

diag 

KL 
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achieve faster convergence then traditional 

reinforcement learning methods [2]. 

As in traditional TD learning methods, initial 

estimates are constantly updated until convergence is 

obtained. The Z-learning update formula is as follows 

[2]: 

 

)()exp()()1()( 1+−+−← tcurtttcurttupd xzqxzxz ηη    (9) 

 

Where zupd(xt) is the updated estimate of z(xt), zcur(xt) 

is the current estimate of z(xt), zcur(xt+1) is the current 

estimate of z(xt+1), qt is the state cost of state xt, and ηt is 

a learning rate which decreases over time. 

 

IV. MODELING NEWTONIAN MECHANICS 

EFFECTS 

In the present work two Newtonian mechanics 

effects were modeled in the passive dynamics 

probability distribution (which is usually defined simply 

as “random walk”): inertia and collisions. These 

Newtonian mechanics effects were modeled and 

simulated in a 2-dimensional “grid-world” (10x10 size, 

with obstacles - Fig.1). The goal of the agent is to find 

the goal position, while avoiding the obstacles on the 

path. 

Initially, a few difficulties have emerged from 

modeling the state signal in the grid world as the 

position of the learning agent. In order to model inertia, 

it is necessary to know the current and the previous 

position of the agent. If the state signal contains only the 

information on the current position, then it is necessary 

to know the current and the previous state in order to 

model the passive dynamics, and this would violate the 

“Markov property” (1). 

Also, in order to model collisions with obstacles and 

walls, the agent would originally need to be able to take 

discrete actions of movement in the direction of the wall 

or obstacle, and this would violate one of the necessary 

conditions to have a LSMDP. 

In order to overcome these two difficulties, the state 

signal was modeled to include information of position 

pairs: the current and the previous position. 

A simple model of inertia was created by assigning a 

pre-defined “highest probability” value (denoted hp) to 

the passive dynamics probability of the next position in 

the current trajectory of the agent. The remaining 

adjacent non-obstacle positions equally share the 

probability (1-hp) (Fig. 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. A two-dimensional “grid world” (size 10x10) 

 

 

 

 

 

 

 

Fig.2. Modeling inertia (with hp = 0.9)  

 

Two types of walls and obstacles were considered in 

order to model collisions: reflexive walls and obstacles 

(which reflect the normal components of impacts); and 

absorptive walls and obstacles (which absorb the normal 

components of impacts). The passive dynamics 

probability distribution is updated based on the current 

position and the previous position of the agent. When 

the agent’s position is adjacent to a wall or obstacle, and 

the most probable trajectory (driven by inertia) is in the 

direction of the wall or obstacle, then the position that 

receives the highest probability value hp is the most 

likely position after a collision with this wall or obstacle, 

and the remaining possible positions share the 

remaining (1-hp), as shown in Fig.3 

 

 

 

 

 

 

 

 

 

 

Fig.3. Collisions with a reflexive and an absorptive wall 

(with hp = 0.9) 
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V. COMPUTATIONAL EXPERIMENTS 

The grid world shown in Fig.1 was solved 

analytically (using equation (8) [2]) and also using Z-

learning. The state cost of every state (except for the 

goal state) is 1 (in order to penalize the agent for 

producing long trajectories) and 0 only at the goal state. 

Both reflexive and absorptive walls and obstacles were 

considered. In Z-learning, three different policies were 

used: policy equal to the passive dynamics; random 

walk policy; and ε-greedy policy (with ε=0.2). When 

the applied policy differs from the passive dynamics 

distribution, importance sampling is required [2]: the 

last term in equation (9) needs to be multiplied by 

pd(xt+1|xt)/û(xt+1|xt), where û is the applied policy – in 

this case it is necessary to know the passive dynamics 

distribution pd. 

In order to measure the quality of the approximation 

of the cost-to-go function estimates produced by Z-

learning, the approximation error (comparing the 

estimates with the correct values obtained in closed-

form) was calculated using the formula: 
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where xi represents the i
th

 state; N is the total number 

of states; v(x) is the current approximation of the cost-

to-go function (obtained by Z-learning) and v*(x) is the 

optimal cost-to-go function obtained analytically. 

The results of the simulations can be seen in Fig.5 

and Fig.6. In all experiments the learning rate ηt decays 

obeying the formula ηt=c/(c+t) where t is the time step 

and c is a constant which was different for each case. 

The results for both models (the model with absorptive 

walls and obstacles; and the model with reflexive walls 

and obstacles) are very similar, indicating that the 

framework is considerably robust. When sampling from 

the passive dynamics, the error takes more steps to 

converge, because the inclusion of inertia in the passive 

dynamics makes this distribution less exploratory than 

random walk. The other two policies (random walk and 

ε-greedy) presented faster convergence, but their use 

requires access to pd. In all cases the Z-learning 

approximation errors consistently decrease as the 

number of simulation steps increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5. Z-learning approximation errors 

(absorptive walls and obstacles) 

 

 

 

 

 

 

 

 

 

 

 

Fig.6. Z-learning approximation errors 

(reflexive walls and obstacles) 

 

VI. CONCLUSION 

The flexible framework of linearly-solvable MDPs 

allowed for simple models of Newtonian mechanics 

effects to be simulated in the passive dynamics 

probability distribution. The cost-to-go function of the 

resulting model was obtained both in closed-form and 

using Z-learning. The Z-learning algorithm was able to 

approximate the correct cost-to-go function, presenting 

errors which consistently decreased with the increase in 

the number of simulation steps. 
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