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Abstract: Q-learning is a kind of reinforcement learning where the agent solves the given task based on rewards 

received from the environment. In this paper, we compared the performance of the Q-learning based on the reward 

examined by the difference of Q-values alignment in two-dimensional (2D) state space under various conditions such 

as angle of VQE rotation which is arranged like a lattice and angle of the agent’s action rotation to correctly evaluate 

the optimal Q-values for state and action pairs, in order to deal with continuous-valued inputs. We apply the proposed 

method with an agent that learns to reach the reward area successfully during the reward-based learning process. A 

reward is given to the learning agent if the agent reaches the reward area during a process of trial. 
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1 Introduction 

Learning algorithms based on evaluative feedback 

signal is generally referred to as RL algorithms.[1,4] In 

a RL paradigm, [4] a system called agent senses the 

environment and produces control actions. The 

environment responds to these control actions. Based on 

these responses a reward function will evaluate the 

control actions. The agent tries to optimize the control 

policy to maximize the total expected reward over a 

finite time-span. Learning may occur using the 

prediction error of expected rewards. 

Reinforcement learning (RL) methods are a 

powerful and useful way to control agents such as an 

autonomous robot. [1] Q-learning [2] is the most widely 

used in RL method which deals with only discrete-

valued inputs (states) and outputs (actions) to represent 

Q-function (action value function) that evaluates 

state/action pairs.  

The aim of this work is to significantly improve the 

learning performance of Q-learning between the state 

space and the action space. Therefore, we implement 

and investigate here in order to clearly show the 

effectiveness of proposed learning method under 

various problems. 

In this paper, we first briefly explain our agent 

model in a single-agent environment. Secondly, we 

define VQE with radius to decide the position. Next we 

describe each of the simulation methods, and then the 

performance of each strategy is examined by computer 

simulations on competitive situations of several 

strategies. We also show that the performance of each 

strategy strongly depends on the situation of our 

simulation methods and the simulation results are 

explained. 

2. Q-Learning 

In Q-learning, [2] the expected value of each action 

in each state is stored. In the other way, the Q-value is 

the expected value of each action in a certain state, 

which is the discounted sum of the rewards agent 

received for state and action pair. We can estimate and 

update the Q-value, which is denoted by  tt asQ ,  

according to the following equation by taking the one 

with the maximum Q-value (highest expected value) for 

the current state. 

 

                                          Eq. (1) 

 

When the agent is in state t, the agent observes the 

state ts and executes the action ta . The agent obtains the 

reward tr , and senses a new state 1ts  by selecting an 

action ta  in state ts . In this equation,  is the 

learning rate and  is the discount rate, both are 

between 0 and 1.  

In the standard Q-learning implementation, Q-values 

are stored in a table, is known as Q-table. It looks like a 

square lattice in two dimensions and one cell is required 

per combination of state and action. This 

implementation is not amenable to continuous state and 

action problems. [3] As the number of state and action 

variables increase, the size of the table used to store Q-

values grows exponentially, is called Curse of 

dimensionality. On the other hand, as the number of 
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dimensions increases, the state space also increases 

exponentially and the learning speed decreases 

dramatically.  

2.1. Behavioral Decision 

The agent selects the next action which has the 

highest Q-value. An action which has a large Q-value is 

considered to be a good way to achieve the reward. 

However, selecting the highest Q-value continually 

decreases the opportunity to find a better way. Therefore, 

the agent sometimes selects the next action at random. 

This random selection is useful for exploring the state 

space and finding a new better way which has not been 

found yet.  

2.2. Voronoi Q-value Element (VQE) 

VQE is a point that has Q-value but we don’t know 

where VQEs should be placed in the states space at the 

initial time. If we got many rewards, we would be able 

to evaluate the positions of VQEs for the optimal policy 

of state-action pair. 

By using the VQE, we can place the Q-value 

arbitrarily in the state space and reduce the waste of 

space. Therefore, as the degree of freedom to select the 

position of VQE is so numerous, we have to decide 

carefully where the VQEs are placed in the state space.  

3. Experimental Model 

In these experiments, we tested with one agent and 

one reward area. The working environment of the agent 

is shown in Figure1, in where, it is intended to learn 

efficient action of an agent which is to reach the reward 

area in the state space.  

The agent’s action of maximum Q-value is selected 

while observing in a certain condition and the agent is a 

random action with a fixed probability. The agent 

observes the distance (r) and the angle ( ) toward the 

reward area.  

 

 

 

 

 

 

 

 

Fig.1. Working environment of an agent 

There are two input variables: 1, the distance 

between an agent and the reward area; 2, an angle 

between the direction of agent’ action and the reward 

area. The state space is constructed with these two input 

values. In this model, the agent is represented by a 

triangular arrowhead which indicates the direction in 

which the agent is moving. The rectangular area 

represents as the reward area.  

3.1. Experimental Environment 

An agent moves in a closed two-dimensional state 

space. Figure 2 shows an image of the agent that learns 

to reach the reward area. A reward is given to the 

learning agent if the agent reaches to the reward area, in 

the other states the reward is always zero.     

 

 

 

 

 

 

 

 

Fig.2. Agent Problem 

In Figure 2, since the number of reward area is one, 

the agent observes two parameters. These two 

parameters construct the two-dimensional state space. 

The dimension of the state space goes up by two 

dimensions when one reward area is increased. 

The possible actions of the agent are: 1, straight 

ahead; 2, turn left; 3, turn right. If the agent reaches the 

reward area, the position of the agent is randomly 

changed in this state space. 

3.2. Experimental Parameters 

 

4. Simulation Methods and Results 
We carried out three types of simulation experiment. 

4.1. Square Lattice with random noise 

The lattice below is a general 2-dimensional lattice 

on partition number 10, shown in figure 4.1.1. The idea 

of the lattice was proposed by VQEs and designates a 2-

width and height of space -100,100 

size of reward area 5 

learning rate   0.1 

discount rate   0.9 

random action rate 0.3 

initial Q-value   01.0,0  tt asQ  

travel distance of agent 2.0~5.0 

Number of execution times 10 trials 

One trial 20 episodes 

One episode 100000 times 
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dimension of 100 VQEs in lattice by symbol 10*10 grid 

environment. If we conduct this general 2-dimensional 

lattice with random noise (i.e., 0, 0.01, 0.02, 0.03, 0.04, 

0.05 randomly arranged VQEs), we get the lattice like 

figure 4.1.2.  

 

 

 

 

 

 

Fig.4.1.1 Original 2-D lattice  Fig.4.1.2. Random Lattice 

 

 

 

 

 

 

 

 

Fig.4.1.3. From regular to random VQE  

As we can see from this above figure, the number of 

rewards is slowing down, thus its performance by this 

strategy depends on the arrangement of VQEs. 

4.2. Lattice VQE rotation by Degrees 

In this subsection, we rotated the above original 2-

dimensional lattice by the angle of clockwise rotation on 

partition number 10 and 20. It turns for each degree of 

rotation by five degrees of angle intervals in the ranges 

from 0 to 90 degrees.  

 

 

 

 

 

 

 

 

Fig.4.2.1. Reward count in a 10*10 grid environment 

 

 

 

 

 

 

 

 

Fig.4.2.2. Reward count in a 20*20 grid environment 

As in the experimental results shown in figure 4.2.1 

for the 10*10 grid environment, the number of rewards 

clearly was slow, and a similar result also occur in a 

20*20 grid environment because the reward propagation 

is delayed.  

As the number of reward count decreases, we 

considered the following possible casual points.  

 When the state changes, a state certainly transit to a 

different state if the action is different.  

 But if lattice VQE rotates, also take in different action, 

grows the probability that the state of result go into the 

same state.  

 Q-value decreases if the action is acting in the same 

area by the Q-learning method as shown in above 

equation (1).  

 Since the angle of lattice VQE rotation for learning is 

enormous, we implemented the next strategy.  

4.3. Rotation of Lattice VQE and agent’s action 

Here, we propose a new simulation experiment 

method in which the reward area is denoted by closed 

circle and the agent is denoted by open circle. The new 

strategy of learning for our target problem is defined as 

figure 4.3.1. Note that the agent takes actions with four 

directions: go up, go down, go left and go right.  

 

 

 

 

 

 

 

Fig.4.3.1. Structure of a new agent 

 

In this case, we rotated the location of reward area 

and initial/default position of agent also. In each degree 

of our rotation, the action selection is simultaneously 

performed by the agent.  

In our computer simulations, we used two elements 

rotations: act-angle and VQE-angle of rotations which 

measure between 0 degrees and 90 degrees by five 

degrees of angle intervals. (Figure 4.3.2) 

Fig.4.3.2. Rotation of VQE and agent’s action 

act_angle45 act_angle0 VQE_angle0 VQE_angle30 
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As Fig. 4.3.3 and Fig.4.3.4 reveals, when the turning 

angle of VQE are 0 degrees and 90 degrees, the results 

are entirely same at all, in fact there’s no difference 

between them. In addition, Fig.4.3.5 also has totally 

same at the turning angle of 0, 90, 180, 270, 360 

degrees and 45, 135 degrees. In this situation, we can 

see that the number of rewards increases due to the 

agent’s optimum actions are four in this strategy.  

Since Fig.4.3.6 generates the number of rewards that 

are put VQE randomly with noise on a number of 

(0,1,2,3,4,5) is relatively compared with in the Fig.4.1.3 

above.  

5. Conclusion and Future Work 

As a result, the learning performance was decrease 

by turning the angle of VQE only. When we turn act 

angle and VQE angle, it improves in performance. The 

difference between the number of actions 3 and 4 is 

according to the following reason.  

The agent’s action space and the state space is match 

or not. In the case of the agent’s action space 

corresponds to the state space, the performance 

improves while shifting in the angle of rotation 

especially VQE angle and act angle is shifting by 45 

degrees is greatly improved. Therefore, it is match of 

agent’s action space and the state space that gives good 

performance. 

In fact, it is different by expression of state input. It 

means when the number of action is 4, the agent 

observes by its position but in the case of action number 

3, it observes the distance and the angle of agent relative 

to the reward area.  

In the current research, we proposed learning 

method of Q-learning based on Voronoi Q-value 

element. In this paper, we examined the learning 

performance of various strategies in a different situation 

for our experimental environment. Although at the 

current stage, we only performed experiments in two 

dimensions, as future topics of research, we plan to a 

high-dimensional problem by generating an N-

dimensional state space.  
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Fig.4.3.3. Reward count in a 10*10 grid environment 

Fig.4.3.4. Reward count in a 20*20 grid environment 

Fig.4.3.6. From regular to random VQE 

(b) 

(a) 

Fig.4.3.5. Angle of rotation for (a) 0,90,180,270,360 

degrees and (b) 45,135 degrees 
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