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Abstract: Understanding of others as having intentional states such as beliefs and desires is called Theory of Mind 

(ToM). To clarify the mechanism of the autonomous acquisition of cooperative behavior based on the ToM, we 

constructed a functional model of the brain based on the Functional Parts Combination (FPC) model. This model 
consists of a set of functional parts and activation signals specifying selective activated patterns, and activated modules 

can be executed in parallel based on the flow of control tokens. The module network and activation signals can be 

acquired by the evolutionary computation techniques used in the Genetic Network Programming and Genetic 

Algorithm, respectively. We use a hunter task as a task to be solved by the agents, and encode inherent activation 

signals into the genome as a first step. The result of computer simulation shows an emergence of the pattern of the 

functional parts for processing ToM through evolution characterized by punctuated equilibrium. 

Keywords: Functional Model of the Brain, Theory of Mind, Cooperation, Evolution, Genetic Network Programming. 

 

I. INTRODUCTION 

Humans are extremely social animals. One aspect of 

social cognition sets us apart from other primates: 

Theory of Mind (ToM). It enables us to understand 

others as having intentional states such as beliefs and 

desires [1]. The evolutionary origins of it can be traced 

back in extant non-human primates; ToM probably 

emerged as an adaptive response to increasingly 

complex primate social interaction [2]. The aim of our 

study is to investigate how cooperative behaviors based 

on ToM emerge through evolutionary processes by 

modeling the brain at the functional level. 

A Genetic Network Programming (GNP) is one of 

the evolutionary computation techniques which can 

autonomously generate behavior sequences by evolution. 

Eto et al. (2006) realized functional localization of GNP 

by switching the nodes depending on the situation [3]. 

However, their model cannot realize parallel processing 

because nodes activate sequentially from a start node as 

well as the conventional GNP. Considering the fact that 

the multiple areas in the brain activate simultaneously, 

we assumed that nodes can be executed in parallel.  

A limited number of attempts have so far been made 

at the constructive approach to ToM characterized by 

the use of computational models for simulating its 

evolution. Among them, there are only a few studies 

which investigate the underlying mechanism of 

evolutionary acquisition of the recursion level in a ToM 

[4] [5]. However, functions of ToM in these studies are 

procedurally defined a priori by the designers.   

We focus on the emergence of a ToM without 

defining it a priori by modeling the brain at the 

functional level. Next section explains a functional 

model of the brain and Section 3 illustrates a task and 

components of the brain. Section 4 shows the 

experiments and Section 5 summarizes the paper. 

 

II. FUNCTIONAL MODEL OF THE BRAIN 

As the functional model of the brain, we adopted the 

Functional Parts Combination (FPC) model [6] in order 

to control the topology of the modules. The FPC model 

is based on the neuroscientific fact that each cerebral 

cortical area has a different role and is selectively 

activated depending on the task [7]. This model consists 

of a set of functional parts and activation signals 

specifying selective activated patterns. Fig. 1 shows a 

functional model of the brain based on the FPC model. 

There are modules Mi in the brain, which constitute a 

module network. A set of modules in the network are 

activated by a set of activation signals. A set of 

activation signals A is represented as a vector of binary 

values 0 and 1: A = ( a0, …, ai, …, ak-1 ), where k is the 

number of modules, and ai is an activation signal for 

module Mi. The activation signals are searched 

depending on the tasks. In the module network, parallel 

computation is controlled based on the simple parallel 

control flow paradigm [8] as follows. All data are 
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transferred indirectly between modules via updatable 

memory cells. The execution starts from the sensory 

input. In a case that all input links receive a control 

token the activated modules begin its computation while 

the non activated modules do not execute it. Then both 

activated and non activated modules output tokens from 

all output links. However, the modules whose input 

links are not connected do not output tokens, regardless 

of whether or not the modules are activated. Besides, 

the memory cells are initialized before each sensory 

input. In a case that the non-written data is attempted to 

load, an error occurs, the process is suspended and 

tokens are output from all output links.  

III. MODULE NETWORK AND TASK 

The module network can be acquired by the GNP, 

however; this paper focused on the emergence of 

activation signals for forming ToM sub-networks to 

achieve cooperative behavior in a hunter task as a first 

step. The discussion on the emergence of modules 

network is outside the scope of this paper and we 

assumed that they had been acquired.  

1. Hunter Task 

There are two hunter and two prey agents in a 20×20 

a two-dimensional grid folded to a torus. Each hunter 

moves one cell per step to the left, right, up or down, or 

stays in the current cell according to its own strategy, 

while each prey moves one cell per step stochastically 

(right; 40 %, up; 20 %, or stop; 40 %). 

When starting the task, all 4 agents are randomly 

located in the grid, and each hunter selects the closer 

prey as an initial target. Each episode ends when each 

hunter captures the different prey or the number of time 

steps exceeds the upper limit stepmax.   

2. The Function of Each Module and Its Networks 

We assumed that humans estimate the intention or 

goal of others by simulating it based on their own 

action-selection process as if they were in the same 

situation [9]. Action-selection process is represented by 

a probability of action a under the condition state s and 

goal G; P(a|s,G) [10].  We defined following strategies 

based on a Dennett's intentional stance [11]: (1) Agent 

at level 0 takes action based on own goal independently 

of the intention of others; (2) Agent at level 1 estimates 

the intention of others by assuming that others would be 

at level 0, and takes action based on it; (3) Agent at level 

2 estimates the intention of others by assuming that 

others would be at level 1, and takes action based on it. 

In order to realize a smooth cooperative behavior, we 

adopted the mixed strategy [10] which dynamically 

changes above three strategies. The module network and 

functions of each module we adopted in the experiments 

are described in Box 1. 

IV. EXPERIMENTS 

1. Experimental Setup 

We conducted simulations in which the activation 

signals of agents were evolved by using a genetic 

algorithm. A chromosome was represented by binary 

encoding, which represents the activation signals A = 

(a0, …, ai, …, ak-1). We first created N individuals 

whose activation signals were randomly generated, and 

every pair of agents solved the hunter task E times in a 

round robin manner. Then, time steps to solve the task 

were averaged over those games, and agents were 

evaluated as: Fitness = 100/step. The offspring in the 

next generation were selected by the linear ranking 

selection method by Baker [12]. Then, cross over was 

performed on the parents to form a new offspring 

(single point crossover) with a crossover probability Pc, 

and each activation signal of all offspring was mutated 

with a mutation probability Pm. We conducted 

evolutionary experiments 13 times using the parameters 

shown in the Table 1. 

Table 1. Experimental setup. 
length of the history:T 5 wi (i = 0, 1, 2) 4 

temperature parameter:β 1 episode: E 10 

α1 0.4 population size: N 20 

α2 0.6 generation 4000 

threshold:θ 32 crossover probability:Pc 0.001 

upper limit:stepmax 500 mutation probability:Pm 0.001 

bi (i = 0, 1, 2) 5 Baker parameter 2 

2. Results 

Fig. 2 shows the transition of the ratio of the 

activation signals in the population (black lines) and the 

fitness (the gray line) on a certain trial. The bar above 

Fig. 2 represents the acquired activated patterns. We see 

Figure 1. Functional model of the brain. 
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that the fitness in the early stage remained very low. 

This is because agents randomly selected their actions, 

and thus they could not solve the task within the upper 

limit (500 steps). The fitness slightly increased at 

around 450th generation with the activation of M9. At 

that time, the activation signals of the major portion of  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

agents were (0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1). 

This means that agents acquired the network for level 0 

ToM. The fitness remained stable in the subsequent 

generations, and then it increased at around 1100th 

generation with the activation of M5 and M7. By then, 

agents had acquired the following activation signals:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Box 1. The module network and function of each module. 
 

 

M10: state recognition 

Own and other's state (ss(t) and so(t)) and action (as(t) and 

ao(t)) at the time t are recognized. The state is defined as 

relative coordinates between the hunter and two preys.  

M12: working memory 

Own and other's state (ss(t – 1) and so(t – 1)) and action (as(t – 

1) and ao(t – 1)) at the time t – 1 are recognized. 

M0, M1: likelihood estimation 

a(t – 1), s(t – 1) and 𝐺 are substituted to own action-selection 

process 𝑃(𝑎|𝑠, 𝐺) in order to calculate the likelihood that 

goal would be 𝐺 as follows: l(G, t) = P(a(t – 1)| s(t – 1), G). 

Likelihood l(G, t) is calculated for all possible goals, and is 

stored in a likelihood history to make estimation of intention 

stable: m(G, t) = {l(G, t), …, l(G, t – T + 1)}, where T is the 

length of the history. Then, cumulative log likelihood L(G, t| 

m) is calculated for all possible goals: L(G, t | m) = Σl∈m(G, t) 

log l. In particular, conviction degree C which represents the 

reliability that the estimated other's goal would be G is 

calculated in M0: C = L(G1st , t| m) – L(G2nd , t| m), where G1st = 

argmaxG L(G, t| m) and G2nd = argmaxG≠G1st L(G, t| m).  

M2, M4: intention estimation 

Others' goal Go or own goal Gs is estimated by an action-
selection function based on soft-max reinforcement learning 
in M2 and M4, respectively: 𝑔 𝐺, 𝑡|𝑚 =

𝑒𝑥𝑝 (𝛽𝐿 (𝐺 ,𝑡|𝑚))

 𝑒𝑥𝑝 (𝛽𝐿 (𝐺 ′ ,𝑡|𝑚 ))𝐺′
 , where 𝛽  is a parameter called the 

temperature. 

M3: clarity comparison 

A hunter judges which more precise is: the clarity of the 

estimated other's goal (L1(Go,t|mo)) or that of the estimated own 

goal (L2(Gs,t|ms)): 𝑝𝑖 =
𝛼𝑖𝑒𝑥𝑝 (𝛽𝐿𝑖)

 𝛼𝑗 𝑒𝑥𝑝 (𝛽𝐿𝑗 )j=1,2
 (𝑖 = 1,2),  where 𝛼𝑖 

is the weight to the Li (𝛼1 + 𝛼2 = 1). 

M8: conviction and clarity judgment 

In a case that conviction degree C (calculated in M0) is less than 

threshold θ or there is no necessity to change own goal (i.e. 

the cooperated rule is already satisfied) the bias of M15 is set to 

b0. If this is not the case, the bias of M6 is set to b1 when the 

clarity of the estimated other's goal (L(Go,t|mo)) is higher than 

that of the estimated own goal (L(Gs,t|ms)), otherwise; the bias 

of M7 is set to b2. 

M16: intention formation 

A hunter judges whether the others' goal 𝐺𝑜and own goal 𝐺𝑠 

satisfy a cooperated condition. For this task, 𝐺𝑜 ≠ 𝐺𝑠  (i.e. 

others' goal differs from own goal) is simply a condition of 

cooperation. 

M5, M6, M7: intention formation 

In M6, own goal Gs1 is formed to satisfy the cooperated 

condition, and the weight of the connection between M6 and M9 

is set to w1. In M7, own goal Gs2 is also formed to satisfy the 

cooperated condition, and the weight of the connection between 

M7 and M9 is set to w2. Other's goal is also formed to satisfy the 

cooperated condition in M5. 

M15: intention 
Own goal 𝐺𝑠 t − 1  selected in M9 (intention selection) at the 

time  t − 1  is stored in the own goal Gs0, and the weight of 

the connection between M15 and M9 is set to w0. 

M9: intention selection 

Own goal Gsi is selected:  𝐺𝑠𝑖 =
𝑒𝑥𝑝 (𝛽ℎ 𝑖)

 𝑒𝑥𝑝 (𝛽ℎ𝑗 )𝑗=0,1,2
 𝑖 =

0,1,2,where hi = bi + wi (i = 0,1,2). 

𝑀11: action selection 

Action 𝑎  is selected by an action-selection function: 

𝑃 𝑎|𝑠,𝐺 =
exp (𝛽𝑄 (𝑎 |𝑠,𝐺))

 exp (𝛽𝑄 (𝑎 |𝑠,𝐺))𝑎′
,where Q represents an evaluation 

value which is acquired by reinforcement learning.  

𝑀14: action-selection function 

It is the one based on soft-max reinforcement learning. 

𝑀13: Q-Table 

It is an evaluation value 𝑄 which is acquired by reinforcement 

learning [18]. Before we conducted experiments in Section 4, 
each agent had acquired a different Q-Table on its own by the 

soft-max reinforcement learning in the setting where there were 

a hunter and a prey (temperature parameter β=1). 

Figure 1. The module network used for the experiments.  

1) ss(t), so(t), as(t), ao(t), ss(t – 1), so(t – 1), as(t – 1), ao(t – 1) and as(t + 1) (action output) are set randomly per step, and then those 

values are updated if related modules are activated. Also, cumulative log likelihood L(G, t | m) and conviction C are set to －
10000 per step, and then those values are updated if related modules are activated. 
2) Sub networks including modules {M9, M10, M11, M13 and M14}, {M9, M10, M11, M13, M14, M12, M16, M0, M2 and M6} and {M9, 
M10, M11, M13, M14, M12, M16, M1, M4, M5 and M7} correspond to ToM 0, 1 and 2, respectively.  
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(0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1), in other 

words, all modules other than M0, M4, and M8 were 

activated. This means that agents could not estimate 

other's and own goal correctly as M0 and M4 were not 

activated, and changed own goal randomly. 

Subsequently, the activated pattern for level 1 ToM was 

emerged with the activation of M0 under the condition 

that the other prerequisites for level 1 ToM (M10, M11, 

M13, M14, M2, M6, and M12) had been acquired. Next, 

there was a remarkable increase in the fitness in parallel 

with the activation of M8. By then, all modules other 

than M4 were activated. This means that agents could 

change strategies between level 0 and level 1 ToM 

based on the conviction degree C representing the 

reliability that the estimated other's goal would be G. 

After that, the activated pattern for level 2 ToM was 

emerged with the activation of M4 under the condition 

that the other prerequisites for level 2 ToM (M10, M11, 

M13, M14, M1, M5, M7, and M12) had been acquired. This 

means that agents changed strategies between level 0, 

level 1, and level 2 ToM based on the conviction degree 

C and the comparison of the clarity of the estimated 

other's goal (L(Go,t|mo)) and that of the own goal 

(L(Gs,t|ms)).  

What it comes down to is that the activated pattern 

of the functional parts for processing ToM tended to 

evolve in incremental steps as: (1) an emergence of the 

activated pattern for level 0 ToM; (2) an emergence of 

that for level 1 ToM; (3) an emergence of that for level 

2 ToM. Looking at other trials, the same tendency could 

be found. 

V. CONCLUSION 

In this paper, we constructed a functional model of 

the brain using a functional parts combination (FPC) 

model to clarify the mechanism of the autonomous 

acquisition of cooperative behavior based on the ToM. 

The result of computer simulation shows an emergence 

of the pattern of the functional parts for processing ToM 

through evolution characterized by punctuated 

equilibrium as: (1) level 0 ToM; (2) level 1 ToM; (3) 

level 2 ToM. The next step would be to investigate the 

acquisition of not only the activation signals but also the 

connections between modules. We believe that the 

proposed method would contribute to clarify the origin 

of ToM. It might be also interesting to discuss the 

feasibility of the acquisition of ToM in humanoid robots. 
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Figure 2. The transition of the ratio of the activation signals
 in the population and the fitness on a certain trial. 
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