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Abstract
Reinforcement Learning (RL) attracts much atten-

tion as a technique of realizing computational intelli-
gence such as adaptive and autonomous decentralized
systems. In general, however, it is not easy to put RL
into practical use. This difficulty includes a problem of
designing suitable state and action spaces of an agent.

Until now, we have proposed an adaptive state
space construction method which is called “state
space filter” and an adaptive action space construc-
tion method which is called “switching RL”, after the
other space has been fixed. In this paper, we recon-
stitute these two construction methods as one method
by treating the former method and the latter method
as the combined method for mimicking infants’ per-
ceptual development in which perceptual differentia-
tion progresses as infants become older and more ex-
perienced, and infants’ motor development in which
gross motor skills develop before fine motor skills re-
spectively. Then the proposed method is based on
introducing and referring to the “entropy”. Further,
a computational experiment was conducted by using
a so-called “path planning problem” with continuous
state and action spaces. As a result, the validity of
the proposed method has been confirmed.

1 Introduction

Engineers and researchers are paying more atten-
tion to reinforcement learning (RL)[1] as a key tech-
nique of realizing autonomous systems. In general,
however, it is not easy to put RL into practical use.
Such issues as satisfying the requirement of learning
speed, resolving the perceptual aliasing problem, and
designing reasonable state and action spaces of an
agent, etc. must be resolved. Our approach mainly
deals with the problem of designing state and action
spaces. By designing suitable state and action spaces
adaptively, it can be expected that the other two prob-
lems will be resolved simultaneously. Here, the prob-

lem of designing state and action spaces involves the
following two requirements: (i) to keep the characteris-
tics (or structure) of an original search space as much
as possible in order to seek strategies that lie close
to the optimal, and (ii) to reduce the search space as
much as possible in order to expedite the learning pro-
cess. These requirements are, in general, in conflict.

Until now, we have proposed an adaptive state
space construction method which is called “state space
filter[2]” and an adaptive action space construction
method which is called “switching learning system[3]”
, after the other space has been fixed. In this pa-
per, we reconstitute these two construction methods
as one method by treating the former method and the
latter method as the combined method for mimicking
infants’ perceptual and motor developments respec-
tively. The proposed method is to construct state and
action spaces adaptively by introducing and referring
to the “entropy” as indexes of both necessity for divi-
sion of the state space in the state and sufficiency for
the number of learning opportunities in the state. Fur-
ther, a computational experiment was conducted by
using a so-called “path planning problem” with con-
tinuous state and action spaces.

2 Typical RL Methods

2.1 Q-learning

Q-learning works by calculating the Quality of a
state-action combination, namely Q-value, that gives
the expected utility of performing a given action in a
given state. By performing an action a ∈ AQ, where
AQ ⊂ A is the set of available actions in Q-learning
and A is the action space of the agent, the agent can
move from state to state. Each state provides the
agent a reward r.

The Q-value is updated according to the following
formula, when the agent is provided the reward :

Q(s(t-1), a(t-1)) ← Q(s(t-1), a(t-1))
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+αQ{r(t-1) + γ max
b∈AQ

Q(s(t), b)−Q(s(t-1), a(t-1))}(1)

where Q(s(t-1), a(t-1)) is the Q-value for the state and
the action at the time step t-1, αQ ∈ [0, 1] is the learn-
ing rate of Q-learning, γ ∈ [0, 1] is the discount factor.

The agent selects an action according to the
stochastic policy, π(a|s), which based on the Q-value.
π(a|s) specifies probabilities for taking each action a
in each state s. Boltzmann selection, which is one of
the typical action-selection methods, is used in this
research. Therefore, the policy π(a|s) is calculated as
follows:

π(a|s) =
exp(Q(s, a)/τ)∑

b∈A
exp(Q(s, b)/τ)

(2)

where τ is a positive parameter.

2.2 Actor-Critic
Actor-Critic methods have a separate memory

structure to explicitly represent the policy indepen-
dent of the value function. The policy structure is
called “Actor”, which selects actions, and the esti-
mated value function is called “Critic”, which criti-
cizes the actions made by the Actor. The Critic is a
state-value function. After each action selection, the
Critic evaluates the new state to determine whether
things have gone better or worse than expected. That
evaluation is TD-error:

δ(t-1) = r(t-1) + γV (s(t))− V (s(t-1)) (3)

where V (s) is the state Value.
Then, V (s(t-1)) is updated according to Eq. (4)

in the Critic, based on this δ(t-1). In parallel, it is
updated for the stochastic policy, π(a|s), in the Actor.

V (s(t-1))← V (s(t-1)) + αCδ(t-1) (4)
where αC ∈ [0, 1] is the learning rate of the Critic.

It is typical for the normal distribution to be used,
shown in Eq. (5), as the stochastic policy in the Actor,
when Actor-Critic is applied to a continuous action
space.In this case, both the mean the mean µ(s) and
the standard error of the mean σ(s) about the normal
distribution are calculated using TD-error δ(t-1) in the
Actor, as Eq. (6),(7).

π(a|s) =
1

σ(s)
√

2π
exp(

−(a− µ(s))2

2σ(s)2
) (5)

µ(s(t-1))← µ(s(t-1)) + αµδ(t-1)(a(t-1)− µ(s(t-1)))
(6)

σ(s(t-1)) ← σ(s(t-1))
+ασδ(t-1)((a(t-1)− µ(s(t-1)))2 − σ(s(t-1))2)(7)

where αµ ∈ [0, 1], ασ ∈ [0, 1] are the learning rate of
the mean and the standard error of the mean respec-
tively. Here, if Eq. (7) is used directly, the standard
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Figure 1: Proposed developing RL model.

error could be 0 or a negative value. So, it is necessary
for the setting of the standard error to be creative to
specify the range, etc.

3 Developing RL
3.1 Outline of a Computational Model

In this section, we propose developing RL model
to mimic processes of infants’ perceptual and motor
developments. The proposed model is constructed by
“state space filter[2]” to mimic a process of perceptual
development in which perceptual differentiation pro-
gresses as infants become older and more experienced
and “switching learning system[3]” to mimic a process
of motor development in which gross motor skills de-
velop before fine motor skills, as shown in Fig. 1.

This model mimics the process of perceptual de-
velopment by differentiating the state space gradually
from the undifferentiated state space. In parallel, this
model mimics the process of motor development by
switching discrete action space learning modules (here-
after called “DA module”) from more coarse-grained
DA module to more fine-grained DA module, and fi-
nally switching to a continuous action space learning
module (hereafter called “CA module”).

3.2 State and Action Spaces Construction
Method

3.2.1 Basic Idea
A variety of methods to acquire the state space filter

and to switch learning module can be considered. In
this paper, we propose a method based on introduc-
ing and referring to the “entropy”, which is defined
on action selection probability distributions in a state,
and the number of learning opportunities in the state.
It is expected that the proposed method (i) is able to
learn in parallel the state space filter and the switch-
ing learning system, (ii) does not required specific RL
methods for the learning module.
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The entropy of action selection probability distri-
butions using Boltzmann selection in a state, HD(s),
is defined by
HD(s) = −(1/ log |AD|)

∑
a∈AD

π(a|s) log π(a|s) (8)

where AD is the action space and |AD| is the number
of available actions of the DA module.

The state space filter is adjusted and the learning
module is switched by treating this entropy H(s) as
an index of necessity of division for an inner state s
and the action space. In parallel, the learning module
is switched by treating this entropy H(s) as an index
of sufficiency for the number of learning opportunities
in the state.

If the entropy does not get smaller despite being the
learning module learned a sufficient number of oppor-
tunities in the inner state, then the state space filter is
adjusted by dividing the inner state and the learning
module is switched to more fine-grained one. In con-
trast, if the entropy get small regardless of the num-
ber of learning opportunities, the learning module is
switched to the CA module due to the number of learn-
ing opportunities being sufficient.

In this paper, Q-learning and Actor-Critic are ap-
plied to the DA module and the CA module respec-
tively. The learning module is switched in the order of
Q-learning with an action space divided evenly into
n, 2n, · · · , 2(N−1)n, finally ending with Actor-Critic,
where N is a number of DA modules.

3.2.2 Adjustment of State Space Filter
If L(s) > θL and H(s) > θH , where L(s) is the

number of learning opportunities in s, θL is a thresh-
old value of the number of learning opportunities, θH

is a threshold value of the entropy, and θL is set at
a sufficiently big number, then the state space fil-
ter is adjusted by dividing a range of the input state
mapped to the inner state s into 2 parts for each di-
mension, and mapping each part to a different inner
state respectively. Simultaneously, the learning mod-
ule is switched. Through this operation, a size of the
inner state space after divided increases by (2M − 1),
where M is a number of dimension. Also note that
the values of the new 2M inner states are the value of
the inner state before divided.

In addition, after the learning module is switched
to the CA module, if L(s) > θL, then the state space
filter is adjusted by dividing the inner state to be more
fine-grained.

3.2.3 Switching of Learning Module
If H(s) > θH , then the learning module is switched

to the CA module due to the number of learning op-

goal

(500,500)

(0,0)

450

start

450

Figure 2: Path planning problem.

portunities being sufficient. In the procedure to switch
controllers, the result of Q-learning is succeeded by
Actor-Critic. The following procedure is conducted :
i) the state value of the Critic,V (s), is initialized by

V (s) =
∑

a∈AQ

π(a|s) ·Q(s, a) (9)

ii) the normal probability distribution used by the Ac-
tor is calculated by

µ(s) = arg max
a∈AQ

Q(s, a), (10)

σ(s) = |AQ(arg max
a∈AQ

Q(s, a))|/6 (11)

where |AQ(i)| is a range of the action space which
represents action i of Q-learning.

If L(s) > θL and H(s) > θH , then the learning
module is switched to more fine-grained DA module,
and finally ending with to the CA module. Simulta-
neously, the state space filter is adjusted.

Q-values of actions newly added ai at this time
are set according to the following formula : Q(s, i) =
maxj∈i−1,i+1Q(s, j) where action i − 1 and i + 1 are
adjacent to action i. This formula is set in consider-
ation of a more efficient search as well as the idea of
the optimistic initial values.

4 Computational Example

4.1 Path Planning Problem
The proposed method is applied to a so-called “path

planning problem” where an agent is navigated from
a start point to a goal area in a continuous space
as shown in Fig. 2. Here, the agent has a circular
shape (diameter = 50[mm]), and the continuous space
is 500[mm] × 500[mm] bounded by the external wall
with internal walls as shown in black. The agent can
observe the center position of the agent: (xA, yA) as
the input, and move 25[mm] in a direction, i.e., decide
the direction: θA as the output.

The positive reinforcement signal rt = 10 (reward)
is given to the agent only when the center of the agent
arrives at the goal area and the reinforcement signal
rt = 0 at any other steps. The period from when the
agent is located at the start point to when the agent
is given a reward, labeled as 1 episode, is repeated.
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4.2 Comparison to Adaptive Methods
We have confirmed that a combined method of the

state space filter and the switching learning system
(hereafter called method “FS”) demonstrates better
performance than three Q-learning methods with the
action space divided evenly into 4, 8 and 16 ,and two
Actor-Critic methods with the state space divided
evenly into 10× 10 and 40× 40 in this task.

In this section, method FS is compared with two
methods using the switching learning system with the
state space divided evenly into 10 × 10 and 40 × 40
spaces (hereafter called method “S10” and “S40” re-
spectively), Actor-Critic using the state space filter
and Q-learning with the action space divided evenly
into 4 spaces using the state space filter (hereafter
called method “FAC” and “FQ4” respectively). Here,
the initial state space filter is designed that divides the
state space evenly into 10× 10 spaces.

Then, the entropy of a continuous action space in a
state for method FAS, HC(s), is defined by

HC(s) = −
∫ ∞

−∞
π(a|s) log π(a|s)da. (12)

By substituting the Eq. (5) into this formula, HC(s) =
log(
√

2πeσ). In method FAS, ifHC(s) < θHC , then the
state space filter is adjusted.

All initial values and the range of σ(x) are set at π
and [0.001, 2π] respectively, all initial means are set to
randomize within a range of [−π, π] for Actor-Critic.
Then, all initial state values and Q-values are set at
5.0 as the optimistic initial values[1] for Actor-Critic
and Q-learning respectively. Here, the initial values
and the maximum limit of σ(x) are set so that ±1σ
and the maximum limit become the size of the action
space: 2π. Further, the adjustment of the state space
filter is assumed until the third attempt in all inner
states because it is impossible to evaluate sufficiency
for division of the state space.

Computer experiments have been done with param-
eters as shown in Table 1. Here, θHD was set referring
to about 0.312 : the maximal value of the entropy
when the highest selection probability for one action
is 0.9, θHC was set referring to about 0.335 : the en-
tropy when the standard error σ is π/6, θL was set in
consideration of the enough big number.

The number of average steps required to accomplish
the task was observed during learning over 20 simu-

Table 1: Parameters for experiments
Parameter Value Parameter Value

αQ, αC, αµ, ασ 0.1 γ 0.9
θHD , θHC 0.3 τ 0.1

θL 1000

 10

 100

 1000

 10000

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

av
er

ag
e 

st
ep

s

episodes

FQ4 FAC S10

S40

FS

Figure 3: Required steps.

lations with various methods as described in Fig. 3.
Learning speed and obtained control rule : It can be
confirmed from Fig. 3 that, 1) method FS have worse
performances than method FQ4, FAC and S10 , but
better performances than method S40 with regard to
the learning speed, 2) method FS has good perfor-
mance as well as method FAC and S40 with regard to
the obtained control rule,

Therefore, we have confirmed that method FAC and
method FS, in that order, demonstrate better perfor-
mance than any other method on the path planning
problem with the continuous state and action spaces.

5 Conclusion
In order to design the suitable state and action

spaces adaptively, we propose, in this paper, the de-
veloping RL model, and state and action spaces con-
struction method referring to the “entropy”. Then,
through the computational experiment, we have con-
firmed that the combined method of the state space
filter and Actor-Critic, and the combined method of
the state space filter and the switching the learning
system, in that order, demonstrate better performance
than any other method on the path planning problem
with the continuous state and action space.

Our future projects include to apply more compli-
cated problems and real world problems, etc.
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